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Figure 1: Comparison between the generated views (left and right) and the ground truth (middle) for the asteroid impact dataset yA31
at cycle time 29945. The orange and blue surfaces are contours of the temperature (0.2 eV ) and water density field (0.002 g/cm3),
respectively. The views have been approximated using only 24 depth images with a resolution of 5122 pixels, whereas the original
triangulation has around 3 million triangles. Our approach first computes the position of each depth image pixel in world coordinates,
and then renders the resulting geometry either via a point cloud (left) or a surface triangulation (right). The used depth images have
been chosen with VOIDGA to bound the maximum approximation error for the current view.

ABSTRACT

In this work, we propose a novel view-approximation oriented image
database generation approach (VOIDGA) that enables the adequate
generation of arbitrary views. Our approach utilizes Depth Image
Based Rendering (DIBR) techniques to derive novel views based on
a set of depth images. In contrast to approaches that store a huge
amount of images to cover a wide range of possible view directions,
VOIDGA identifies and stores only those images that significantly
contribute to the overall view-approximation quality while bounding
the resulting approximation error. This further reduces the size of
image databases and the number of images that need to be processed
by DIBR algorithms. We demonstrate VOIDGA on several challeng-
ing real-world examples, and compare our approximations against
ground truth renderings using two image-based metrics.

Keywords: Image Database, Depth Image Based Rendering,
Geometry Reconstruction, View Approximation

1 INTRODUCTION

The increasing size and complexity of datasets make it necessary to
reduce the amount of stored information while still supporting effec-
tive data exploration through interactive visual interfaces. Especially
in the case of extreme scale simulations, it is often impossible to
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interactively render—or even store—an acceptable set of simulation
states for post hoc analysis due to bandwidth and I/O constraints. To
address this issue, Ahrens et al. [1] proposed the ParaView Cinema
concept as an image-based approach for the post hoc exploration of
simulation output. In their approach, an image database is created
in situ consisting of color and depth images of simulation elements
taken from various camera positions. Such databases are several or-
ders of magnitude smaller than the simulation data they are derived
from, and they enable the real-time exploration of extreme scale
simulations by querying and compositing images from the database.
Rudimentary image database viewers facilitate basic camera move-
ment by simply snapping to the closest available camera position for
a requested viewpoint [2, 23, 32]. As a principled limitation, these
viewers cannot visualize viewpoints that had not been foreseen and
specified during database generation. However, depth image based
rendering (DIBR) algorithms enable the approximation of novel
views based on existing database elements, which supports uncon-
strained camera interaction for visual exploration (Fig. 1). Such
algorithms, however, introduce approximation errors that depend
on the quality of the used DIBR technique and the input depth im-
ages. It is also not clear which and how many images are needed to
adequately approximate a wide range of novel views.

In this paper, we address these issues by taking the first steps
towards leveraging the information stored in an image database to its
full potential. Specifically, we propose a novel view-approximation
oriented image database generation approach (VOIDGA) that deter-
mines a minimal set of input depth images that enable the approxi-
mation of new views within a certain error bound. The core concept
of VOIDGA is to identify and store images that significantly con-
tribute to the overall view-approximation quality, while at the same
time discarding images that can already be adequately approximated.
This yields much smaller image databases than the ones produced
by current state-of-the-art implementations which uniformly sample



Figure 2: Sampling grids for the Cinema database generation: a
latitude-longitude parameterized sphere (left), and a refined icosphere
(right). The first subdivision is shown in red, the second subdivision in
gray. The icosphere vertices are uniformly spread, while the latitude-
longitude grid oversamples poles, and undersamples the equator.

images on a spherical grid (Fig. 2). This also results in a reduced set
of images that need to be processed by DIBR algorithms while still
guaranteeing a minimum approximation quality.

We demonstrate the effectiveness of VOIDGA on several real-
world examples of varying complexity, including strongly jagged
surfaces and line geometry which represent worst-case scenarios
for depth image based geometry approximation algorithms. To as-
sess the quality of the resulting approximations, we deploy two
image-based metrics to measure the perceived and actual shape
distortion between ground truth images and the approximations.
Furthermore, our approach can act as an optional addition to ex-
isting image databases, and can be employed independently from
other database dimensions; such as time or parameter values. To
summarize, the contributions of this work are:

• A survey of literature on IBR methods suited for scientific
image database element approximation.

• A detailed description of a DIBR implementation for the ap-
proximation of arbitrary views for Cinema databases.

• A novel view-approximation oriented image database genera-
tion approach (VOIDGA) that derives a minimal set of images
to approximate arbitrary views within a certain error bound.

• The demonstration that this approach allows fluid camera inter-
action with acceptable errors, which are examined qualitatively
and quantitatively using two image-based metrics over several
databases created from real-world use cases.

2 RELATED WORK

Image Based Rendering (IBR) methods and their integrated ge-
ometry approximation algorithms have been extensively studied
in the context of remote rendering [3, 6, 17], image-based mesh-
ing [7, 9, 27, 31, 43, 44], 3D video processing [26, 38], and many
more. In remote rendering, they significantly reduce server and
bandwidth load by enabling clients to extrapolate new views based
on already transmitted images without additional requests to the
server [6]. As soon as the camera from the client diverges too much,
the server generates and sends new depth images to the client. This is
especially useful if the visualizations require computational or data
intensive procedures. In 3D video processing, they allow to post hoc
create stereoscopic images based on video-plus-depth footage [38].
They are also used to mesh objects based on multiple photographs,
which enables photorealistic texture mapping [34, 39], the digital
archiving of cultural heritage [44], and the complete reconstruction
of indoor as well as outdoor environments [27, 43].

Shum and Kang [35] point out that all these methods require
either implicit [4,5,9,21,42,44], explicit [6,27,30,31], or no [18,25]
geometry information to create novel views based on feature reg-
istration, geometry approximation, or plenoptic functions, respec-

tively. Implicit geometry approximation algorithms interpolate be-
tween images by detecting and tracking features—such as the optical
flow [4,21,42] or SIFT [9]—which creates visually appealing transi-
tions between different views. However, the interpolated images do
not necessarily have to coincide with reality, and often exhibit ghost-
ing and warping artifacts [37]. IBR algorithms that use no geometry
information interpret large, dense sets of images as two-dimensional
slices of the four-dimensional light field function [18, 25]. All im-
ages are used to approximate the light field which is subsequently
sampled to generate novel views. This produces high quality re-
sults as long as the light field approximation is good enough, but
this requires a huge amount of images (1k+) and even compressed
representations [18] do not scale for non-static scenes.

On the other side of the IBR spectrum are algorithms that ex-
plicitly derive the implied geometry of depicted objects based on
depth images. These images can be obtained from sensors [27, 43],
estimators [10,19,20,22], or directly from the rendering pipeline [1].
As it is straight-forward to generate Cinema databases that contain
precise depth images of 3D rendered objects—such as iso-surfaces,
streamlines, and particles—we focus in this paper on Depth Image
Based-Rendering (DIBR) techniques. This does not mean, how-
ever, that the other approaches do not have merit or are inapplicable
for Cinema databases. In the following, we present an overview
across the development of DIBR techniques, which is also the basis
of our exemplary implementation. Like other DIBR methods, our
implementation is based on the fact that each pixel of the depth
image corresponds to a 3D point on the depicted surface (Fig. 3a and
b). These points can be computed by inverting the projection that
was used to generate the depth image [6, 27, 30, 31], which yields
a set of independent points in 3D space. A simple way to render
the resulting locations is to represent them as a point cloud, called
splatting [28, 31, 36, 46] (Fig. 3b). However, this creates gaps be-
tween points; especially when the depth image has a low resolution.
The gaps can be filled by increasing the point size (which leads
to a strong divergence from the original surface), or by increasing
the point number (which requires high-res depth images). Another
way to solve this problem is to continuously fill these gaps. For
this it is necessary to link neighboring points of the depth image by
creating a surface patch between them, i.e., derive a triangulation
based on the depth image. As a first step, one can create two trian-
gles between four neighboring pixels to create a piecewise linear
approximation of the surface between the points (Fig. 3c). This fills
all gaps, but also creates surface patches between pixels with very
different depth values (Fig. 3c). This is known in the DIBR literature
as the depth discontinuity [26, 38, 45]. A trivial solution to this
problem is to use a distance threshold to discard distorted triangles
(Fig. 3d). Unfortunately, there exists no threshold value that will
always produce the best results as this value strongly depends on
the smoothness of the depicted object. Moreover, removing such
triangles creates gaps again that must be either filled by a variant
of splatting [26], or by incorporating the implied geometry from
multiple depth images [5, 6, 27] (Fig. 4).

Our algorithm follows the previously described outline, but is
optimized for the view approximation of Cinema databases as these
pose additional challenges. Most prominently, it is not possible to
derive new image artifacts once the database has been build, since
this would require rerunning the simulation. Therefore, it is neces-
sary to determine in situ various database parameters (e.g., the image
resolution and sampling rate) that will later enable the approxima-
tion of views within a certain error threshold. To assess the quality
of the approximated views, we use two image metrics: the Depth
Difference (DD) [15], and the Multi-Scale Structural Similarity Met-
ric (MS-SSIM) [41]. An advantage of these image-based metrics
is that they fit well in the context of Cinema databases, and that
they are independent of the actual data representation. Euclidean-
based mesh distortion metrics—including the Hausdorff Distance,
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Figure 3: Illustration of the forward mapping of a single 40x40 depth image (a) for the viscous finger dataset. The resulting points can either be
directly visualized by splatting (b), or by approximating the surface between the points ((c) and (d)). Splatting (b) creates gaps that need to be
filled either by increasing the point number (i.e., image resolution) or the point size. The surface approximation creates piecewise-linear patches
between vertices (c), but a distance threshold is needed to discard distorted triangles (d).

the Root Mean Square Error, the Mesh Structural Distortion Measure
2, and the Mean Opinion Scores—explicitly compare two differ-
ent representations, i.e., the triangle meshes. These require either
that the meshes have the same number of vertices, or that a point-
correspondence has to be established beforehand [14]. In the case of
extreme scale simulations—which is the primary application of Cin-
ema databases—they are expensive to compute and very restrictive.

3 METHOD

In the following we describe our DIBR implementation that approx-
imates the depicted surface geometry, the error metrics that are used
to evaluate the resulting approximation quality, and our novel view
approximation-oriented image database generation approach.

3.1 Depth Image Based Rendering Implementation
In this section we describe our DIBR implementation that enables
the generation of novel views based on image database elements.
The core idea of this approach is to deform for each individual
depth image a uniform grid to approximate its depicted geometry,
discard distorted parts of the approximation, and finally compose
the approximations from multiple depth images into a single image.
Fig. 5 shows the outline of our DIBR algorithm which is completely
implemented in the standard OpenGL rendering pipeline. Note,
however, that this just serves as an exemplary implementation and
that VOIDGA can use any DIBR method.

3.1.1 Stage 1: Initialization
First, we initialize a Framebuffer Object (FBO) cache P that will be
used in stage 2 to store the 3D world positions of the depth image
pixels. We also create a uniform grid that will be deformed for each
cached texture in stage 3. Each vertex of the grid corresponds to a
single pixel. Thus, the number of vertices corresponds to the image
resolution, and the xy-coordinate of each vertex is the 2D-index of its
associated pixel. To create piecewise-linear surface patches between
the vertices, we create two triangles for each group of four pixels
that are adjacent to each other. Even for full HD resolutions, this
yields a number of triangles that can easily be handled by standard
graphics hardware. The topology of the resulting mesh stays the
same throughout the entire rendering pipeline, and its geometry will
only be updated on the GPU during a vertex shader call at stage 3.

3.1.2 Stage 2: Caching
To avoid recomputing the 3D world positions of all depth image
pixels each time the camera is changed, we cache the positions
of each depth image Di in a new position texture Pi. In contrast
to the depth image that stores at each pixel the depth value, the

position texture stores at each pixel the 3D world position of its
corresponding depth image pixel. If the depth image was generated
by an orthographic camera then the position of each depth image
pixel can be calculated by

p(u,v,d) = ~cp +u · cw · (~cd × ~cu)+ v · ch · ~cu +d · ~cd (1)

where ~cp, cw, and ch are the camera position, width, and height
in world coordinates; ~cu and ~cd are the normalized camera up and
direction vector; u,v ∈ [−0.5, 0.5] are the coordinates of the pixel
in image space; and d is the depth value of the pixel in world
coordinates. We use an orthographic over a perspective camera
model to avoid projective distortions [15]. Since each pixel can be
processed individually, we compute all positions of Di in one pixel
shader pass that stores the locations in a new framebuffer Pi, which
is then inserted into the texture cache P. In our experiments, this
process takes roughly 0.02s for each 10242 depth image while not
utilizing parallelism.

3.1.3 Stage 3: Forward Warps
In this stage, we reproject the locations stored in the texture cache
P using the current camera setting. First, we clear color and depth
channels of the framebuffer F , and then process each texture in the
cache individually to incorporate its depicted surface into the overall
view approximation.

Figure 4: Composited approximations of the viscous finger dataset
using four depth images with a resolution of either 402 (left) or 10242

(right). Colors encode the depth image that generates its correspond-
ing surface patch. Depth images that depict the same part of a surface
generate similar patches which causes z-fighting.



Stage 1
(Initialization)

initialize:
• FBO cache P for stage 1
• position mesh for stage 2
• FBO F for stage 3

Stage 2
(Caching)

- clear FBO cache P
- for each depth image Di:

• create framebuffer Pi
• store world positions of Di in Pi
• append Pi to P

Stage 3
(Forward Warps)

- clear color and depth buffer of F
- for each framebuffer Pi ∈ P:

• perform forward warp of Pi
using position mesh

• render diffuse and depth to F

Stage 4
(Post Processing)

render F to screen using:
• SSAO
• FXAA

Figure 5: Outline of our DIBR pipeline. First, we initialize the data
structures that are used in later stages. We then build a texture
cache that stores the 3D world positions of the depth image pixels.
Upon camera rotation, we process the cache and reproject positions
using the new camera settings to write color and depth outputs in an
intermediate framebuffer. Finally, we post-process the framebuffer
using SSAO and FXAA.

Next, for each texture Pi we perform an optimistic forward map-
ping of the uniform grid vertices. Thus, in the vertex shader, each
vertex looks up its corresponding 3D location in Pi and subsequently
uses the projection of the current view to compute its new location
in image space. This deforms the uniform grid to align with the
positions depicted by the original depth image Di. Subsequently, we
have two options on how to render the grid: either we use splatting
by rendering the vertices as points (Fig. 3b), or we render the trian-
gles connecting the vertices (Fig. 3c). As we demonstrate in Sect. 4,
both methods have their relative advantages. Splatting requires a
certain point size (which might be relatively large) to fill gaps and
give the illusion of looking at a surface. The triangulation, on the
other hand, suffers from depth discontinuity problems, i.e., it also
creates surface patches between vertices which are far apart. To
compensate, we introduce the distance threshold to discard distorted
triangles (Fig. 3d). Unfortunately, there exists no distance thresh-
old that always produces the best results in every scenario. This
parameter depends strongly on the depth image resolution and the
smoothness of the depicted surface. As we decrease the threshold,
we remove more and more distorted triangles and thus create less
surface area, but the remaining approximated surfaces have a higher
probability of belonging to the originally depicted surface.

If an image database only consists of depth images then we sim-
ply render a user-controlled color value for the resulting geometry.
If the database also stores for each depth image a data texture that
associates a scalar value with every depth image pixel—such as a
temperature measurement at the depicted surface—then we also pass
this texture to the shader. The data values are then rendered accord-
ing to a user-specified color map (Fig. 8). In the case of splatting,
we render the resulting color for the entire point (Fig. 8a). For the
triangulation, we linearly interpolate the scalar values between tri-
angle vertices (Fig. 8c). Note, in our current implementation we do
not compute any lighting in this stage, although it would be possible.
Instead, our deferred renderer computes the lighting in stage 4.

Finally, we write the color and depth value to framebuffer F ,
where each render call updates—but never clears—the current depth
buffer. This way, the deformed grids get drawn with correct occlu-
sion, and only a constant triangle mesh is supplied for each render
call. The only thing that changes during each pass is the used posi-
tion texture Pi. Since we use the conventional z-buffering algorithm,
we can take advantage of hardware acceleration. Fig. 4 illustrates
which depth image contributes which part of the resulting surface
approximation. Images that depict the same part of the surface gen-
erate patches that overlap and thus cause z-fighting. In our case, this
is advantageous as this indicates that the approximations agree on
the shape of the depicted object. Another advantage of the modular
design of our composition scheme is that it is possible to process
any subset of the cache. This set could consist of all available depth
images, or an intelligently chosen subset of neighboring camera lo-
cations. On average hardware, our current implementation processes
up to 200 Full-HD depth images at interactive framerates (> 30 Hz).

3.1.4 Stage 4: Post Processing

As we do not compute any lighting at stage 3, we use a customized
Screen Space Ambient Occlusion (SSAO) shader to compute the
global and local lighting. The global lighting greatly enhances
spatial perception by darkening regions that are next to areas which
are closer to the camera. For the local lighting, the SSAO shader
approximates the normal at a fragment and subsequently computes
its interaction with a point light source. The approximated normals
are also used to create a silhouette effect by emphasizing hard edges.
Furthermore, it is possible to adjust SSAO parameters such as the
radius of the depth sampling as well as the emphasis of shadows
and edges. The initial settings of these parameters can be used for
any scene, but users can perform a fine tuning to highlight specific
aspects of a model. Finally, the Fast Approximate Anti-Aliasing
(FXAA) shader smoothes jagged edges.

3.2 Quality Metrics

To assess the significance of individual depth images during the use
of VOIDGA (Sect. 3.3), and to validate our results (Sect. 4), we
compare the approximated views to ground truth renderings using
the Multi-Scale Structural Similarity Metric (MS-SSIM) [41] that
estimates the perceived image similarity, and the Average Depth
Difference (DD) [15] that measures the actual shape distortion.

The DD tries to capture the volumetric difference between two
objects and is computed in two stages. First, it computes the Average
Depth Difference (ADD) between two depth images by computing
the actual depth value difference per pixel. Hence, it is assumed
that the depth images have the same size, and that their values are
in the range [0,1]. Similar to Cinema databases, this is done for
multiple camera angles that are positioned on vertices of a grid that
encapsulates the dataset and aim towards the object center. The DD
is then given as the average of all computed ADDs.

The MS-SSIM is modeled after the assumption that the human
visual system is highly adapted for extracting structural information
from 3D projections. Thus, a measure of the structural similarity
between images can provide a good estimate of the perceived image
quality [40,41]. In contrast to the original SSIM, the MS-SSIM itera-
tively downsamples the input images to determine the luminance and
contrast variations for varying resolutions. This allows to evaluate
the structural similarity between images more independently from
the actual image sizes. Similar to the ADD metric, we compute the
MS-SSIM for multiple camera positions and build the average to
evaluate the structural similarity across the entire approximation.
However, the ADD computes an error value from 0 (identical) to 1
(complete opposite), whereas the MS-SSIM computes a score from
0 (not similar) to 1 (identical).



3.3 VOIDGA
We propose a novel view-approximation oriented image database
generation approach (VOIDGA): a greedy algorithm that iteratively
refines a sampling grid and then only stores potential database ele-
ments (also called artifacts) that significantly contribute to the over-
all approximation quality. To this end, VOIDGA consists of three
phases: the database backbone generation, the database refinement,
and the database downsampling. To run VOIDGA completely auto-
matically, users have to specify the maximum number of database
artifacts, the initial (and thus maximum) artifact resolution, and the
initial error tolerances. In the following, we demonstrate VOIDGA
using our DIBR implementation, and the ADD and MS-SSIM met-
rics, but it is possible to use VOIDGA with any method or metric.

3.3.1 Backbone Generation
First, we normalize the dataset geometry according to the dimensions
of the unit-cube with center at the origin, and then select a sampling
grid structure. A common way to generate Cinema databases is to
uniformly sample along a latitude-longitude parameterized sphere
that encapsulates the dataset, where the cameras are positioned at
the grid vertices and aim towards the center (Fig. 2). For image
database viewers that simply snap to the next available artifact, this
creates intuitive transitions as it seems like the camera rotates along
the lat-lon axes. However, this grid causes an oversampling at the
poles, and an undersampling at the equator (Fig. 2 left). Since our
DIBR method is not restricted to the actual artifact locations, we
propose to use an icosahedron as a sampling primitive. In contrast
to a lat-lon grid, each icosahedron refinement uniformly creates new
sampling positions that equally cover possible view angles (Fig. 2
right). As these positions are eventually added to the database, we
effectively improve the approximation quality in each step.

To generate the database backbone (a small set of database ar-
tifacts that are the basis for the view approximation), we sample
images on the 12 vertices of the unrefined icosahedron (intersection
of red lines in Fig. 2, right). For each vertex of the grid, we generate a
depth image with the initial resolution using an orthographic camera
where the width and height are set to the icosahedron diameter. Thus,
each artifact encapsulates the complete dataset, and the 12 locations
already provide a good view angle coverage. It is also possible to
add model-specific view angles—such as interior locations—to the
backbone if such important angles are known. The next phase uses
the resulting artifacts as a basis for the view approximation.

3.3.2 Database Refinement
In this phase, VOIDGA iteratively refines the sampling grid and only
adds artifacts that significantly contribute to the global approxima-
tion quality. Hence, it is necessary to derive two depth images for a
position: the depth image D of the ground truth geometry, and the
depth image D̂ of the current view approximation using all available
database artifacts. Note, the depth image D̂ depends on the used
DIBR algorithm (e.g., triangulation or splatting) and its respective
parameters (e.g., the distance threshold and point size). In the case
of our implementation, we initialize the DIBR pipeline by building
the position texture cache using the database backbone.

To automatically tune the initial settings of the DIBR parameters,
we derive both D and D̂ at the positions where the approximation
error can be assumed to be maximal, i.e., at the triangle centers
of the current icosahedron refinement. Next, VOIDGA finds a
local approximation error minimum by iteratively increasing the
DIBR parameters. To do this, it is only necessary to derive the
new depth images D̂, and to compare them to the cached images D
by computing the ADD and the MS-SSIM for each resulting pair.
The ADD can be directly computed using the depth images, but
the MS-SSIM compares color images. Since our DIBR pipeline
is modular, we can simply feed the depth images individually into
stage 4 of our rendering system to generate images that are equally

shaded. As soon as the error increases, we stop the automatic tuning
and communicate the current error and DIBR settings to the user.
Although VOIDGA can run fully automatically, this gives users
the option to directly compare the current approximation against
the ground truth; either by directly contrasting the pairs, or by free
camera movement as long as the ground truth can be rendered at
interactive framerates. Moreover, users can adjust the database
constraints and the error thresholds, which is especially useful if
proper initial settings are unknown.

After the automatic tuning, VOIDGA refines the icosahedron
grid which yields a set of potential database artifact locations at the
new vertex positions. VOIDGA then derives for each position both
depth images and computes the error metrics. Instead of storing all
depth images D immediately in the database, VOIDGA discards all
pairs that satisfy the error thresholds, and then only adds the ground
truth image to the database that has the worst approximation quality.
Next, it recomputes the depth images D̂ at the remaining positions
with the current database, and then repeats the previously described
process. After all current positions have been processed, VOIDGA
again refines the icosahedron, performs the parameter tuning, and
selects important samples. This process is repeated until either the
maximum number of artifacts is reached, or all candidates satisfy the
error thresholds. This scheme reduces the number of stored artifacts,
while asserting a minimal approximation quality at the missing
sampling locations. In our experiments, sequentially executing this
process took roughly one minute. Note, however, deriving new depth
images and their scores is embarrassingly parallel.

3.3.3 Database Downsampling
Finally, VOIDGA communicates to the user the impact of the arti-
fact resolutions on the overall approximation quality and the used
disk space. Obviously, a lower artifact resolution results in worse
approximations, but the benefit of a significant disk space gain might
be worth a slightly worse approximation quality. Note, for this stage
it is not necessary to actually recompute the depth images D and D̂,
instead they can be directly downsampled from the high-res images.

4 RESULTS

In the following, we demonstrate the effectiveness of VOIDGA in
conjunction with our DIBR implementation on several real-world
examples of varying complexity. To validate the quality of the
generated views, we examine the approximation error qualitatively
and quantitatively based on two image similarity metrics.

4.1 Error Plots
We quantitatively evaluate the approximations generated by the pro-
posed algorithm using the similarity metrics described in Sect. 3.2.
Specifically, for a given resolution and number of database elements
that were either generated uniformly (U) or via VOIDGA (V), we
generate a total of 1,000 random viewing directions over the unit
sphere, derive both the ground truth and the approximated view, and
subsequently compute the difference between them based on the
ADD and MS-SSIM metrics. Fig. 6 depicts the distributions of both
metrics grouped first by dataset, then by image resolution, and finally
by the different sampling methods. We proceed to demonstrate and
discuss these results in detail for each of the three datasets.

4.2 Viscous Fingering
We first demonstrate our approach on datasets that exhibit large
smooth surface areas. Specifically, we generated image databases
for the simulation ensemble that was provided for the 2016 Scientific
Visualization Contest [11]. These simulations model the process of
viscous fingering: an instability phenomenon that occurs in porous
media at the interface between two fluids of distinct viscosity. In the
specific case of the contest dataset, the simulations model a cylinder
that is filled with pure water and that contains an infinite salt supply



Figure 6: Approximation errors resulting from our DIBR approach measured via the Multi-Scale Structural Similarity Metric (MS-SSIM; top set),
and the Average Depth Difference (ADD; bottom set) for 1,000 random viewing positions on the unit-sphere. For each metric, we compute the error
that results from splatting (cool colors, top row) and triangulation (warm colors, bottom row) grouped first by dataset, then by image resolution, and
finally by the selection method of database elements. Legends indicate how many images were used as the basis for the view approximation, e.g.,
the 42 images that are uniformly sampled on a refined icosahedron are shown in red. The gray set of values indicates the errors achieved by
database elements that were chosen by VOIDGA to adequately approximate the depicted model. The violin plots illustrate for each case the
histogram of errors over the random positions. Top set: MS-SSIM metric (higher values are better; 1.0 denoting identical images). It can be
observed that as the resolution and number of base images increase, the approximation converges to the ground truth, with acceptable values
(> 0.95) for all three datasets already reached for 42 images with a resolution of 2562. Except for the streamline dataset, the top-heavy histograms
indicate that the distribution is skewed strongly towards higher similarity with only few outliers. The VOIDGA approach selects more images than
strictly necessary, but can be employed in situ without prior knowledge of the values underlying these diagrams. Bottom set: ADD metric in
logarithmic scale (lower is better, 0.0 denoting perfect reproduction). Again, errors are low even for few images or comparatively low resolution.

at its top. As soon as the salt mixes with the water, the resulting
solutions sink down to the bottom as they have a higher density than
the surrounding water. Meanwhile, the solutions form structures
with increased salt concentration value; called viscous fingers. We
follow the approach of Lukasczyk et al. [24] to identify viscous
fingers as isosurfaces of the salt concentration density field. Fig. 5
shows the ground truth isosurface geometry and the view approxi-
mations, where the viscous fingers and the salt supply are colored
bright orange and dark gray, respectively. Quantitative results for
this dataset are shown in Fig. 6, left column. For smooth surfaces

as the ones found in this case study, triangulation outperforms the
splatting technique. Not only does it exhibit a lower approximation
error, but also achieves a higher frame rate. Splatting causes a warp
of the original surface—i.e., creates an artificial width of the surfaces
based on the point size—which causes the generated views to score
lower on the image metrics. As shown in Fig. 6, VOIDGA uses
fewer images (23) than the complete second icosahedron refinement
(42), yet achieves similar error scores. Artifacts that depict the top of
the salt supply are discarded by VOIDGA as the smooth surface of
the supply can already be approximated by the database backbone.



Ground Truth

Triangulated
Approximation

42 x (5122)

Triangulated
Approximation

42 x (1282)

Splatted
Approximation

42 x (5122)

Splatted
Approximation

42 x (1282)

Figure 7: Generated views for the ground water dataset using different rendering modes and parameters. The images show the path of water (red
streamlines) through a karst limestone ground sample (gray) that was taken in south Florida. The dataset was provided by the Texas Advanced
Computing Center (TACC) and the Florida International University. All views have been generated using 42 depth images with a resolution of
either 5122 or 1282 pixels. As the approximations show a view angle that was not covered by the used depth images, the approximation error is
largest in the cavities where no geometric information is available. Nevertheless, the outer structure is accurately reconstructed even for the
relatively low number and resolution of the depth images.



4.3 Asteroid Impact
A second dataset exhibiting large and relatively smooth isocontours
is part of a threat assessment study of asteroid ocean impacts [33]
that was made publicly available for the 2018 scientific visualization
contest [12]. The dataset consists of several extreme scale simu-
lations that model different impact scenarios for varying impact
angles, asteroid sizes, and heights of potential airbursts. We gen-
erated isosurfaces for the temperature and water density field for
impact scenario yA31, i.e., no airburst event, an asteroid diameter
of 250 meters, and an entry angle of 45 degrees. Fig. 1 depicts
the temperature and water density isosurfaces for level 0.2 eV and
0.002 g/cm3 in orange and blue, respectively. The ground truth
geometry consists of roughly three million triangles, while the gen-
erated view was derived based on only 12 depth images with a
resolution of 5122 pixels for each contour, i.e., 24 depth images with
an uncompressed total size of 24MB. The images were chosen using
VOIDGA to ensure approximation error bounds of 0.001 ADD and
0.97 MS-SSIM for the current view. The large surfaces are accu-
rately approximated, while the base of the water vapor exhibits some
approximation errors. Triangulations do not create adequate surface
patches of small features due to the low pixel density of the used
depth images. Splatting, on the other hand, will render a point at
the location of a small feature as long as it is depicted by at least a
single depth image pixel. However, the splatted surface suffers from
gaps, and the point borders induce a rough surfaces appearance. In-
creasing the point size to fill these gaps results in an artificial surface
warp that negatively impacts the overall approximation quality.

4.4 Groundwater
In this case study, we demonstrate that our DIBR algorithm can
also approximate very complex surfaces with an acceptable error,
and that our approach enables the composition of approximated and
explicitly stored geometries. To this end, we generated a Cinema
database for a karst limestone ground sample that was taken in south
Florida. The ground sample was provided by the Texas Advanced
Computing Center (TACC) and the Florida International University
as a triangulated surface consisting of roughly 8 million triangles
(gray surface of Fig. 7 top). Domain experts involved in this re-
search are primarily interested in the propagation of ground water
through the stone cavities (red streamlines of Fig. 7). This dataset is
challenging for depth image based geometry approximation since
the complex structure of the cavities occlude most of the interior
geometry. To compensate, it is necessary to sample depth images
on a dense grid. In the following, we show that even for the low
number of samples chosen by VOIDGA it is possible to adequately
reconstruct the outer shell of the stone. However, to demonstrate
the effects of undersampling, we use only 42 depth images with a
resolution of either 5122 or 1282 pixels that are sampled on a once
subdivided icosahedron (Fig. 2b).

The rows 2-3 and 4-5 of Fig. 7 show approximated views that are
generated via surface triangulation or splatting, respectively. The
lighting of the complete scene is performed in the post process-
ing shader. Screen space ambient occlusion greatly enhances the
perception of the stone porosity and the spatial arrangement of the
streamlines. With the sparse sampling the outer structure of the
stone is still accurately reconstructed, while deep inside the cavities
it results in missing geometry. Moreover, fine details of the structure
are only visible if the resolution of the depth images is high enough.
Since the proposed triangulation algorithm requires at least three
neighboring depth pixels that are below the distance threshold to
create a surface patch, the resulting approximations ignore one pixel
wide surface depictions. Splatting preserves these features, as each
depth image pixel is still represented by a single point. However, the
size of these points must be large enough so that their overlap fills
the gaps between them. Large points also give the impression that
surfaces have non-zero width, which is not true for triangulated sur-

faces. Yet, this greatly improves the 3D perception and emphasizes
hard edges such as cavity openings. Nevertheless, rendering the
point cloud is more expensive than rendering the triangulation. The
triangulation also enables the more accurate estimation of surface
normals, since splatting renders each point as a flat disc that faces
the camera. This causes depth discontinuities at the disc boundaries.

To emphasize the impact of the artifact resolution, Fig. 7 also
shows the geometry approximations that result from using images
with only 1282 pixels. These depth images do not have a sufficient
resolution to represent small cavities, as neighboring pixels are too
far apart in world space, while the drastically varying surface be-
tween the pixels is not depicted. However, even at this resolution,
prominent features such as the big cavities are clearly identifiable.
Triangulation requires a fairly high distance threshold to coincide
with the rough shape of the original surface, which results in numer-
ous distorted triangles. Splatting also requires a large point size to
fill gaps. Because the triangulation connects neighboring pixels with
similar depth values, splatting produces much better results for low
resolution images as each pixel is still mapped to 3D space indepen-
dent of its neighbors at the price of warping the resulting surfaces.
This is also reflected in the error metrics (Fig. 6, middle). Especially
the MS-SSIM is very sensitive to the surface warps. Furthermore,
VOIDGA uses far fewer artifacts (82) than the maximum refinement
level (162) while achieving similar approximation errors. Since the
cylindrical stone sample has a relatively smooth backside, VOIDGA
primarily stores images that depict the front.

An advantage of the modular design of the demonstrated DIBR
algorithm is that the approximated geometry can be rendered to-
gether with other, non-approximated geometries. For instance, the
red streamlines of Fig. 7 are explicitly stored geometries that are
correctly composed with the approximated geometry. Based on this
principle, extremely large simulation elements can be approximated
by depth images, while specific features of smaller size can be stored
explicitly.

4.5 Jet Streamlines

Sparse line geometry is another challenge for depth image based
approximation techniques due to the strong depth variations of neigh-
boring pixels. In the following, we demonstrate the quality of our
view approximation for streamlines computed from a CFD Jet simu-
lation. It models the injection of a jet into a medium at rest and the
friction-based formation of vortical structures.

As expected, the approximations cause large errors for small
image resolutions (Fig. 6, right column). Intuitively, the image
resolutions are far too low to distinguish between individual stream-
lines. This is especially negative for the triangulation as neighboring
streamlines are falsely connected via surface patches (Fig. 8, right).
Although splatting can still produce convincing results even for low
resolutions, the necessary large point size bloats the streamlines
(Fig. 8, left) which has a dramatic impact on the error metrics.

For this dataset, we used VOIDGA to generate a database with
a focus on high quality depth approximations rather than image
similarity, effectively de-emphasizing color reproduction. There-
fore, we enforced a strict ADD threshold (0.0004) and a relaxed
MS-SSIM threshold (0.8). This bias towards depth image quality
can also be observed in the respective error plots. Note that the
VOIDGA database (72 images) and the maximum refinement level
(162 images) achieve similar errors.

The colors of the streamlines encode their lifetime and are mapped
post hoc. This requires to store for each depth image an additional
floating point image that records at each pixel the lifetime of the
depicted part of the streamlines. The ability to apply a color map
post hoc on the approximated geometries demonstrates that our
approach can be easily combined with the existing practice of image
databases.



Splatting Ground Truth Triangulation

Figure 8: Comparison between the generated views (left and right) and the ground truth (middle) for the jet dataset. To emphasize potential visual
errors, the views have been approximated by using only the database backbone (12 depth images) with a resolution of either 2562 or 5122 pixels
for the splatting or triangulation technique, respectively. The color map was applied post hoc and encodes the lifetime of individual streamlines.
For sparse line geometry, the triangulated approximation exhibits large artifacts as it connects neighboring streamlines; falsely considering them to
be a single surface. Splatting generates comprehensible results, but the points have to be relative large to create the impression of looking at
continuous surface geometry. This bloats the streamlines, and therefore the resulting images score badly for the used metrics.

5 LIMITATIONS

The scope of this paper is to demonstrate the application of DIBR
techniques in the context of Cinema databases, with the aim of
understanding the value of these techniques for in situ and post hoc
visualization. This does not only include the DIBR approximation
of views, but also the smart generation of databases that guarantee a
maximum approximation error. Advancing from this core concept
towards a practical system requires several extensions.

First, as our entire pipeline is based on DIBR techniques, it is
necessary to derive and store depth images. Thus, our approach does
currently not support the approximation of volume renderings and
transparent geometry. In this case, one needs to adapt other tech-
niques such as image warping [16] or volumetric depth images [8].

Our geometry approximation methods (triangulation and splat-
ting) are fairly rudimentary DIBR approaches. Although they re-
quire a minimal overhead and already produce acceptable results,
more advanced DIBR methods are expected to produce higher qual-
ity approximations. Such techniques can easily be integrated into
VOIDGA due to its modular design. Moreover, both of our DIBR
implementations require parameters (the distance threshold and the
point size) whose values have a significant impact on the resulting
approximation quality. VOIDGA is capable of automatically finding
suitable initial parameters, but the current tuning procedure can get
stuck in local extrema. To solve this problem, we will integrate more
advanced optimization techniques such as simulated annealing [13].

Naturally, the effectiveness of VOIDGA depends strongly on
the used comparison metrics. While we have selected metrics that
represent geometry representation (ADD) and image similarity (MS-
SSIM), both are not without drawbacks. The most significant prob-
lem is their strong dependence on the background to foreground
ratio. In effect, a larger background will result in better similarity
scores which is not ideal for real-world settings. Moreover, the ADD
is computed for normalized depth values, and therefore depends on
the precision of the depth buffer. The MS-SSIM, on the other hand,
requires input parameters that can currently only be chosen heuris-
tically [41]. Furthermore, both metrics evaluate the overall image
quality, and thus neglect small but potentially important features.

6 CONCLUSION AND FUTURE WORK

We presented a novel view-approximation oriented image database
generation approach (VOIDGA) that determines and stores a mini-
mal set of images for the generation of arbitrary views while bound-
ing the maximum approximation error. As demonstrated on sev-
eral challenging real-world examples, VOIDGA can reduce image
database sizes and the number of images that need to be processed
by DIBR methods. VOIDGA can also ensure that a disk space
budget is used to its full potential, which stands to be useful for in
situ visualization, but also for sharing visualization results where
bandwidth usage is of importance.

We examined the resulting approximation error qualitatively and
quantitatively via two image-based comparison metrics: the ADD
and MS-SSIM. Based on our results, we found that even a rela-
tively low number of database elements (∼ 42) at medium resolution
(5122) can already produce high quality approximations. More-
over, smooth surfaces can be well approximated by triangulations,
whereas extremely jagged surfaces, sparse line-geometry, and low-
resolution depth images are best approximated by splatting.

Towards adapting VOIDGA for production use, many improve-
ments appear possible. As described in Sect. 5, we plan to in-
tegrate more advanced DIBR methods and other error metrics to
further improve the resulting approximation quality. This is possi-
ble due to VOIDGA’s modular design. We also plan to investigate
view-dependent resolutions and feature-based camera locations. For
example, depictions of smooth surfaces could be stored at low res-
olution, whereas detailed surface variations and important features
are depicted by high-res images. A combination with the work of
Nouanesengsy et al. [29] appears fruitful.
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the rate0distortion performance of a wavelet0based mesh compression
algorithm by perceptual and geometric distortion metrics. WSCG’2012,
p. 10, 2012.
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