
TECHNISCHE UNIVERSITÄT KAISERSLAUTERN

DEPARTMENT OF COMPUTER SCIENCE

VISUAL INFORMATION ANALYSIS GROUP

Topology-Based Characterization and Visual Analysis
of Feature Evolution in Large-Scale Simulations

Thesis approved by the Department of Computer Science
of the Technische Universität Kaiserslautern

for the award of the Doctoral Degree
Doctor of Natural Sciences (Dr. rer. nat.)

to

Jonas Lukasczyk

Date of Defense: 19 July 2019

Dean: Prof. Dr. Stefan Deßloch

Reviewers: Prof. Dr. Heike Leitte, TU Kaiserslautern
Prof. Dr. Gunther H. Weber, Lawrence Berkeley National Laboratory
Dr. Julien Tierny, CNRS - Sorbonne Université

D 386

3

ABSTRACT

This manuscript presents a topology-based analysis and visualization framework that
enables the effective exploration of feature evolution in large-scale simulations. Such
simulations pose additional challenges to the already complex task of feature tracking
and visualization, since the vast number of features and the size of the simulation data
make it infeasible to naively identify, track, analyze, render, store, and interact with data.
The presented methodology addresses these issues via three core contributions. First, the
manuscript defines a novel topological abstraction, called the Nested Tracking Graph
(NTG), that records the temporal evolution of features that exhibit a nesting hierarchy,
such as superlevel set components for multiple levels, or filtered features across multiple
thresholds. In contrast to common tracking graphs that are only capable of describing
feature evolution at one hierarchy level, NTGs effectively summarize their evolution
across all hierarchy levels in one compact visualization. The second core contribution
is a view-approximation oriented image database generation approach (VOIDGA) that
stores, at simulation runtime, a reduced set of feature images. Instead of storing the
features themselves—which is often infeasable due to bandwidth constraints—the images
of these databases can be used to approximate the depicted features from any view angle
within an acceptable visual error, which requires far less disk space and only introduces
a neglectable overhead. The final core contribution combines these approaches into a
methodology that stores in situ the least amount of information necessary to support
flexible post hoc analysis utilizing NTGs and view approximation techniques.

ACKNOWLEDGEMENTS

The research presented in this dissertation would have not been possible without the
outstanding commitment and support of all my supervisors: Prof. Dr. Heike Leitte, Prof.
Dr. Christoph Garth, and Prof. Dr. Gunther H. Weber. I experienced the best working
atmosphere imaginable, and our discussions have been invaluable to me.

I am extremely thankful that I was part of the international research training group
IRTG2057 that provided me with opportunities to attend international conferences,
to enhance my inter-cultural competences due to several research stays abroad, and
to learn from many distinguished international experts. The international exchange of
knowledge was instrumental in my research. Therefore, I thank all my colleagues and
collaborators from the TU Kaiserslautern, the Fraunhofer ITWM, the Arizona State
University (ASU), and the Los Alamos National Laboratory (LANL). I want to especially
thank Prof. Dr. Ross Maciejewski (ASU) for his continuous guidance throughout my
entire doctoral studies, and Dr. James Ahrens (LANL) for arranging my visits to the
national laboratory. I would also like to express my deep appreciation to Prof. Dr. Hans
Hagen who continuously gave me highly valued professional as well as personal advice.

Finally, I thank my friends and family for their constant emotional support. First
and foremost, I thank my wife Qiong Xiao for coping with my trips abroad and my
long working hours during paper deadlines. I thank my parents—Bettina and Walter
Lukasczyk—who are a fixed anchor in my life I can always rely on. Everyone involved
in my life made my time as a doctoral student an enriching and beautiful experience.

CONTENTS
List of Figures 8

List of Definitions 10

List of Algorithms 12

Notations 13

1 Introduction 15
1.1 Scope . 16
1.2 Contributions . 16
1.3 Structure . 18

2 Background and Related Work 19
2.1 Preliminary Definitions . 20
2.2 Data Representation . 22

2.2.1 Domain Representation . 22
2.2.2 Value Representation . 28

2.3 Topology-Based Feature Characterization 30
2.3.1 Level, Sublevel, and Superlevel Sets 32
2.3.2 Merge and Contour Trees . 36
2.3.3 Critical Points . 40
2.3.4 Merge Tree Computation . 44
2.3.5 Contour Tree Computation . 48
2.3.6 Topological Simplification . 50

2.4 Feature Tracking . 54
2.4.1 Tracking Graphs . 56
2.4.2 Tracking via Spatial Overlap 58
2.4.3 Topology-Based Tracking Approaches 65

2.5 Cinema Databases . 68
2.6 View Approximation Techniques . 71

2.6.1 Implicit Geometry and No-Geometry based Techniques 71
2.6.2 Depth Image Based Rendering Techniques 72

3 Nested Tracking Graphs 75
3.1 Motivation . 76
3.2 Approach . 78

3.2.1 Formalization . 78
3.2.2 NTG Computation Via Spatial Overlap 80
3.2.3 Visualization . 83

Contents 7

3.3 Results . 86
3.3.1 Viscous Fingering . 86
3.3.2 Jet Simulation . 88
3.3.3 Dark Matter Halos . 90
3.3.4 Clique Communities . 92

3.4 Discussion . 94

4 VOIDGA 97
4.1 Motivation . 98
4.2 Approach . 99

4.2.1 Image Similarity Metrics . 100
4.2.2 Database Backbone Generation 100
4.2.3 Database Refinement . 101
4.2.4 Database Downsampling . 102

4.3 Results . 103
4.3.1 Error Plots . 103
4.3.2 Viscous Fingering . 106
4.3.3 Asteroid Ocean Impacts . 107
4.3.4 Karst Limestone Ground Sample 108
4.3.5 Jet Streamlines . 112

4.4 Discussion . 113

5 Dynamic Nested Tracking Graphs 115
5.1 Motivation . 116
5.2 In Situ Database Generation . 118

5.2.1 Merge Tree Segmentation-Based Tracking 118
5.2.2 Image Generation . 122

5.3 Post Hoc Database Exploration . 126
5.3.1 Dynamic Nested Tracking Graphs 126
5.3.2 Image Retrieval and Compositing 128
5.3.3 Visual Analytics Framework 129

5.4 Results . 131
5.4.1 Viscous Fingering . 131
5.4.2 Asteroid Impacts . 133
5.4.3 Jet Simulation . 136

5.5 Discussion . 137

6 Conclusion 139

Bibliography 141
Curriculum Vitae 153
List of Publications 155

8 List of Figures

LIST OF FIGURES

1.1 Methodology . 17

2.1 Simplicies . 22
2.2 Simplicial Complexes . 23
2.3 Simplex Stars and Links . 25
2.4 Manifold Triangulations . 27
2.5 Piecewise Linear Scalar Fields . 29
2.6 Overview of the Topology-Based Feature Characterization 31
2.7 Level, Sublevel, and Superlevel Sets 33
2.8 Isocontouring . 35
2.9 Join, Split, and Contour Trees . 37
2.10 Quotient Spaces . 39
2.11 Critical Points . 41
2.12 Merge Tree Computation . 47
2.13 Contour Tree Computation . 49
2.14 Topological Simplification . 51
2.15 Feature Tracking . 55
2.16 Spatial Overlap-Based Tracking . 57
2.17 Spatial Overlap-Based Tracking in Regular Grids 59
2.18 Foot-And-Mouth Disease Outbreaks 61
2.19 Spatial Embedding of Tracking Graphs 61
2.20 Finite Pointset Simulation of Viscous Fingering 63
2.21 Tracking Graph for the Viscous Finger Dataset 63
2.22 Projected Tracking Graph of the Viscous Finger Dataset 64
2.23 Camera Sampling Grid of the Cinema Approach 68
2.24 Cinema Databases . 69
2.25 Cinema Database Format . 70
2.26 Depth Image Based Rendering Techniques 73
2.27 Image Compositing . 74

3.1 Nested Tracking Graph Concept . 77
3.2 Layout Computation of a Nested Tracking Graphs 84
3.3 A Simple NTG-Based Visual Analytics Framework 85
3.4 NTGs for the Viscous Finger Dataset 87
3.5 NTGs for the Jet Dataset . 89
3.6 NTGs for the Dark Matter Halo Dataset 91

List of Figures 9

3.7 Clique Communities . 93

4.1 Different Camera Sampling Grids of the Cinema Approach 101
4.2 Error Plots for the Multi-Scale Structural Similarity Metric 104
4.3 Error Plots for the Average Depth Difference 105
4.4 View Approximation for the Viscous Finger Dataset 106
4.5 View Approximation for the Asteroid Impact Dataset 107
4.6 View Approximation for the Limestone Dataset I 109
4.7 View Approximation for the Limestone Dataset II 111
4.8 View Approximation for the Jet Dataset 112

5.1 Processing Pipeline of the Proposed Methodology 117
5.2 Merge Tree Segmentation-Based Tracking 119
5.3 One Iteration of the MTS-Based Tracking Algorithm 121
5.4 Branch Decomposition-Based Image Generation 124
5.5 Composited 3D View of the Jet Dataset 125
5.6 NTG Vertex and Nesting Tree Computation 127
5.7 Depth Image Based Rendering . 128
5.8 Advanced NTG-Based Visual Analytics Framework 130
5.9 Overlap-Based Tracking VS. Segmentation-Based Tracking 132
5.10 Analysis of the Asteroid Impact Dataset 135

10 List of Definitions

LIST OF DEFINITIONS

1 Topology . 20
2 Topological Space . 20
3 Function . 20
4 Injection . 20
5 Surjection . 20
6 Bijection . 20
7 Enumeration . 20
8 Open Set . 20
9 Closed Set . 20
10 Continuous Function . 21
11 Homeomorphism . 21
12 Homeomorphic . 21
13 Homotopy . 21
14 Homotopic . 21
15 Path . 21
16 Connected Topological Space . 21
17 Connected Component . 21
18 Simply Connected . 21
19 Convex Set . 22
20 Convex Hull . 22
21 Simplex . 22
22 Simplex Face . 23
23 Simplex Boundary . 23
24 Simplex Interior . 23
25 Simplicial Complex . 23
26 Star . 24
27 Closed Star . 24
28 Link . 24
29 Lower/Upper Link . 24
30 Underlying Space . 26
31 Triangulation of a Topological Space 26
32 Manifold . 26
33 Piecewise Linear Manifold . 26
34 Scalar Field . 28
35 Barycentric Coordinates . 28

List of Definitions 11

36 Piecewise Linear Scalar Field . 28
37 Time-Varying Piecewise Linear Scalar Field 28
38 Level / Sublevel / Superlevel Set . 32
39 Contour . 32
40 Component Segmentation . 32
41 Quotient Space . 38
42 Reeb Graph; Contour, Merge, Join, and Split Tree 39
43 Branch Decomposition . 39
44 Merge / Contour Tree Segmentation 40
45 Regular Point . 42
46 Minimum / Maximum . 42
47 Saddle Point . 42
48 Piecewise Linear Morse Scalar Field 42
49 Tracking Graph . 56

50 Nested Tracking Graph . 79

12 List of Algorithms

LIST OF ALGORITHMS
1 Compute Component Segmentation . 34
2 Compute Augmented Join Tree . 45
3 Compute Spatial Overlap between Component Segmentations 59
4 Compute Tracking Graph based on Component Segmentations 59

5 Compute Nested Tracking Graph based on Component Segmentations . . 81
6 Compute Nested Tracking Graph Layout 83

7 VOIDGA . 99

8 Compute Meta-Edges . 119
9 Generate Component Group Images based on Branch Decomposition . . 123
10 Compute Nested Tracking Graph based on Meta-Edges 127

Notations 13

NOTATIONS

X,Y Topological space
Rd Euclidean space of dimension d
N<n Set of natural numbers including zero smaller than n
Z Set of integers
card(X) Cardinality of set X
X \Y Set X without elements of set Y
Ẋ Connected component of set X
X̄ Enumeration of all elements of set X
f−1 Inverse of function f
σ Simplex
⟨p0, ..., pd⟩ A d-simplex for affinely independent points p0, ..., pd

K Simplicial complex
|K| Underlying space of simplicial complex K
M Manifold
M Piecewise linear manifold
L f (l) Level set of function f for isovalue l
L−f (l) Sublevel set of function f for isovalue l
L+f (l) Superlevel set of function f for isovalue l
L̇ f ,x(l) Level set component of L f (l) that contains point x
M/∼ Quotient space of manifold M under equivalence relation ∼
R f Reeb graph of function f
C f Contour tree of function f
C−f Join tree of function f
C+f Split tree of function f
C∗f Join, Split, or Contour Tree of function f
P f Persistence diagram of function f
S Segmentation
Ṡ Sublevel and superlevel set component segmentation
S̃ Contour, join, and split tree segmentation
T Tracking graph
N Nested tracking graph

15

CHAPTER 1

INTRODUCTION

In many scientific domains, interesting features correspond to areas that exceed some
threshold. Examples include highly turbulent regions in flow fields (vortices), areas in
combustion simulations above a fuel consumption rate threshold (burning cells), parts
of the universe exceeding a dark matter density (halos), and regions in a fluid with a
minimum viscosity (viscous fingers). Simulating models of these phenomena is crucial
to understand them, since simulations provide the means to verify hypothesis, to derive
predictions, and—most importantly—to iteratively advance the models. To this end, it is
essential for simulation analysis to reliably identify individual features, and to robustly
correlate them over time, which enables the characterization of features, as well as their
evolution, properties, and mutual interaction. Recent advances in high-performance
computing enable large-scale simulations of such models, which introduces additional
challenges to the already complex task of simulation analysis, as the vast number of
features and the size of the simulation data make it infeasible to naively identify, track,
render, store, and interact with features.

16 CHAPTER 1 — INTRODUCTION

1.1 SCOPE
The methodology described in this manuscript focuses on a central limitation of large-
scale simulations, i.e., the fact that it is usually infeasible to store every simulation state
in its entirety due to bandwidth and disk space constraints [2, 68, 118]. This limitation
becomes more apparent as we approach the era of exascale computing. A solution to this
problem is to deploy in situ analysis algorithms that process simulation data while it is
still in machine memory. The purpose of these algorithms is to determine and store, at
simulation runtime, the least amount of information necessary to support flexible post
hoc analysis; including the capability to identify, filter, track, and render features. At the
same time, effectively exploring numerous features and their complex evolutions requires
visual analytics frameworks that partition features into a manageable amount of groups.
This hierarchical decomposition enables the visual analysis of features in a level-of-detail
approach, by providing overviews of feature groups, as well as detailed information about
individual features, their properties, and evolutions.

1.2 CONTRIBUTIONS
Topological data analysis enables the precise and robust characterization of feature
evolution in scalar fields, including abstractions that identify features as domain subsets
based on field values (level, sublevel, and superlevel set components), that describe the
structure of the entire field (contour trees), that rank and filter features according to their
significance (persistence), and that record the temporal evolution of features (tracking
graphs). This work presents a novel topological abstraction, called the Nested Tracking
Graph (NTG), that records the temporal evolution of features that have a nesting hierarchy;
such as superlevel set components for multiple levels, or filtered features across multiple
persistence thresholds. In contrast to common tracking graphs that are only capable of
describing feature evolution at one hierarchy level, NTGs effectively summarize feature
evolution at all hierarchy levels in one compact visualization (Fig. 1.1a-b). Each layer
of a NTG is a common tracking graph, where edges of different layers are drawn inside
each other based on the nesting hierarchy of the features. This hierarchy is recorded
for each timestep by a so-called merge tree (Fig. 1.1d). The proposed methodology
stores, at simulation runtime, the merge trees and other intermediate data structures to
efficiently compute NTGs for any feature parameters post hoc, without requiring access
to the original simulation data. NTGs then enable analysts to effectively peel through the
simulation data by interactively updating feature parameters, and following the history of
individual features and feature groups (Fig. 1.1b-d).

1.2 CONTRIBUTIONS 17

92 94 96 98 100 102 104 106 108(a) Nested tracking graph colored by layer

92 94 96 98 100 102 104 106 108

(b) Nested tracking graph colored by individual features of the second layer

(c) 3D view composed of individual feature images

0

0.1

0.2

0.3

0.4

(d) Merge tree illustrating the significance and nesting hierarchy of features

Figure 1.1: Individual elements of the proposed methodology demonstrated on the
asteroid impact case study described in Sec. 5.4.2.

18 CHAPTER 1 — INTRODUCTION

To render feature geometries post hoc, the proposed methodology uses a view-
approximation oriented image database generation approach (VOIDGA) to store, at
simulation runtime, a collection of feature images for a predefined set of parameter
values (Fig. 1.1c). Instead of storing the feature geometries themselves—which is often
infeasable due to bandwidth constraints—VOIDGA stores a reduces set of images that
can be used by image-based rendering techniques to approximate the depicted geometries
from any view angle with an acceptable visual error, which requires far less disk space
and only introduces a neglectable compositing overhead.

Finally, the proposed methodology combines NTGs and image databases to derive
in situ a database that enables flexible post hoc analysis within a topology-based visual
analytics framework. The core interaction device of this framework is a NTG that is
dynamically computed based on analysis products stored in the database, which is used
to browse through time, update feature parameters, aggregate features into groups, and to
retrieve feature images and other data products form the database. This approach enables
the efficient interactive analysis of large-scale simulations based on a relatively small
database. The primary advantage of this methodology is that the database only grows
proportional to a predefined parameter sampling—e.g., based on a maximum number of
images, or a list of level values—independent of the actual size of the simulation data and
the number of features. This decoupling enables the approach to scale to state-of-the-art,
largest-scale simulations which stand to benefit from the proposed methodology.

1.3 STRUCTURE
This manuscript is structured as follows.

Ch. 2 introduces the background of the proposed methodology, including the data repre-
sentation, feature characterization, tracking approaches, and view-approximation
techniques.

Ch. 3 then uses these definitions to formalize NTGs and demonstrate their effectiveness
in several case studies.

Ch. 4 describes the view-approximation oriented image database generation approach
(VOIDGA) that derives, at simulation runtime, a reduced set of feature images
that are composited during post hoc analysis to render 3D scenes.

Ch. 5 combines NTGs and image databases to derive in situ a database that enables
flexible post hoc analysis.

Ch. 6 summarizes the results of the proposed methodology and provides an outlook on
future research directions.

19

CHAPTER 2

BACKGROUND AND RELATED WORK

This chapter introduces the topological concepts and data structures which are the basis of
this work. This includes state-of-the-art approaches for feature characterization, tracking,
scientific image databases, and view approximation techniques. Specifically, the first
section (Sec. 2.1) build up to a formal definition of the primary data representation that is
used throughout this manuscript (Sec. 2.2). This representation enables the formalization
of topology-based feature characterizations (Sec. 2.3), which are then used to formalize
tracking techniques for these features (Sec. 2.4). The second contribution of this work
is an interactive interface design for large-scale simulations that enables the real-time
visualization of features. The core components of this interface are scientific image
databases (Sec. 2.5), and view approximation techniques (Sec. 2.6).

20 CHAPTER 2 — BACKGROUND AND RELATED WORK

2.1 PRELIMINARY DEFINITIONS
This subsection contains preliminary definitions that are used throughout this manuscript
to formalize the data representation and feature characterization.

Definition 1 (Topology) A topology on a set X is a collection T of subsets of X having
the following properties:

(i) The sets /0 and X are in T ;

(ii) The union of any sub-collection of T is in T , and;

(iii) The intersection of a finite sub-collection of T is in T .

Definition 2 (Topological Space) A topological space X= (X ,T) is a pair of a set X and
a topology T defined on X.

Definition 3 (Function) A function f : X→ Y associates each element of the topological
space X with exactly one element of the topological space Y. The inverse of f is denoted
by f−1 : Y→ X.

Definition 4 (Injection) A function f : X→ Y is an injection iff

∀x1,x2 ∈ X : x1 ̸= x2⇒ f (x1) ̸= (x2).

Definition 5 (Surjection) A function f : X→ Y is a surjection iff

∀y ∈ Y : ∃x ∈ X s.t. f (x) = y.

Definition 6 (Bijection) A function f is a bijection iff it is an injection and a surjection.

Definition 7 (Enumeration) An enumeration is a bijection X̄ : N<n→ X that maps the
first n natural numbers to the elements of a collection X where n = card(X). Hence,
X̄−1(x) returns the index of element x ∈ X in X̄. To simplify notations, an enumeration
can also be denoted as a sequence

X̄ = (X̄0, X̄1, . . . , X̄n−1).

Definition 8 (Open Set) A set X ⊆ X of a topological space X is an open set of X if it is
in the topology T of X.

Definition 9 (Closed Set) A set X ⊆ X of a topological space X is a closed set of X if its
compliment X\X is open.

2.1 PRELIMINARY DEFINITIONS 21

Definition 10 (Continuous Function) A function f : X→ Y is continuous iff for each
open subset Y ⊆ Y the set f−1(Y) is an open subset of X.

Definition 11 (Homeomorphism) A homeomorphism between two topological spaces X
and Y is a continuous bijection f : X→ Y whose inverse f : Y→ X is also continuous.

Definition 12 (Homeomorphic) Two topological spaces are said to be homeomorphic iff
there exists a homeomorphism between the two spaces.

Definition 13 (Homotopy) A homotopy between two continuous functions f ,g : X→ Y
is a continuous function h : X× [0,1]→ Y such that h(x,0) = f (x) and h(x,1) = g(x)
for all x ∈ X.

Definition 14 (Homotopic) Two continuous functions f and g are said to be homotopic
iff there exists a homotopy between the two functions.

Definition 15 (Path) A homeomorphism p : (0,1)→ Y from the unit interval to a subset
Y ⊆ Y is called a path between the points p(0) and p(1) in the topological space Y.

Definition 16 (Connected Topological Space) A topological space X is connected iff
there exists a path on X between any two distinct points of X.

Definition 17 (Connected Component) A connected component Ẋ (sometimes just re-
ferred to as a component) is a maximal connected subset of a set X.

Definition 18 (Simply Connected) A topological space X is simply connected iff it is
connected and any two paths on X between any two distinct points of X are homotopic.

Note, if there exists a homeomorphism between two topological spaces, then any
connected neighborhood of one space can be mapped to a connected neighborhood of the
other, and vice versa. If these neighborhoods can even be deformed into each other by a
continuous function, then this deformation function is called a homotopy.

22 CHAPTER 2 — BACKGROUND AND RELATED WORK

2.2 DATA REPRESENTATION
Many scientific simulations and experiments of physical phenomena are modeled as
collections of real-valued functions f : X→ R over a topological space X. However, the
values of f are often only computed or observed at a finite set of points. This section
describes how to represent the underlying space with a finite collection of simple pieces
that connect these points (Sec. 2.2.1), and how values only available at these points can
be interpolated across the entire space of the representation (Sec. 2.2.2).

2.2.1 Domain Representation
The methodology described in this manuscript processes representations of topological
spaces based on collections of simple pieces (called simplices) that constitute more
complex structures (called simplicial complexes) [25].

Simplicies

Formally, a d-simplex is the convex hull of d +1 affinely independent points in Rn with
0≤ d ≤ n, where the most basic simplex corresponds to a single point (called a vertex).
Vertices play a special role as they (a) represent the discrete locations on where data
is available, and (b) define higher dimensional simplices. The second property enables
the description of the space between vertices via a piecewise linear combination of the
vertices (Fig. 2.1), which is convenient to interpolate values within simplices (Sec. 2.2.2).

Definition 19 (Convex Set) A subset X ⊂ Rn is convex if for any two points x0,x1 ∈ X
and λ ∈ [0,1] the point p = (1−λ)x0 +λx1 is also an element of X.

Definition 20 (Convex Hull) The convex hull of a point set X ⊂Rn is the unique minimal
convex set containing all points of X.

Definition 21 (Simplex) A d-simplex σ = ⟨p0, ..., pd⟩ is the convex hull of d +1 affinely
independent points pi ∈ Rn with 0≤ d ≤ n. The points pi are called the generators of σ .

0-simplex
(Vertex)

1-simplex
(Edge)

2-simplex
(Triangle)

3-simplex
(Tetrahedron)

Figure 2.1: Illustration of d-simplices for 0≤ d ≤ 3.

2.2.1 DOMAIN REPRESENTATION 23

Simplicial Complexes

The next step is to “glue” multiple simplices together to build more complex structures,
called simplicial complexes (Fig. 2.2). This requires the definition of a simplex face, i.e.,
the areas of simplices on which it is allowed to glue them together. Hence, a face of a
d-simplex σ is a simplex that is defined by any non-empty subset of the d +1 vertices
of σ . For instance, the faces of a triangle (a 2-simplex) are its vertices (0-simplices),
edges (1-simplices), and the triangle itself. Moreover, the boundary of a d-simplex is
the union of all its d-1-faces, e.g., the boundary of a triangle is the union of its edges.
Based on these definitions, a simplicial complex corresponds to a collection of simplices
together with all their faces, where two simplices are either disjunct or their intersection
is a complete face of both simplices. This ensures that simplices are only connected via a
common face; which prohibits degenerate structures.

Definition 22 (Simplex Face) A face τ of a d-simplex σ is any simplex defined by a
non-empty subset of the d +1 generators of σ , and is denoted by τ ≤ σ .

Definition 23 (Simplex Boundary) The boundary of a d-simplex σ is the union of its
d-1 dimensional faces.

Definition 24 (Simplex Interior) The interior of a d-simplex σ is the set of points of σ

that are not elements of its boundary.

Definition 25 (Simplicial Complex) A simplicial complex K is a finite collection of
non-empty simplices such that (i) every face of a simplex σ ∈ K is also in K, and (ii) any
two simplices of K intersect in a common face or not at all.

Figure 2.2: Illustration of a simplicial complex consisting of vertices (discs), edges
(lines), triangles (red surfaces), and tetrahedra (blue volumes). Note, simplicies only
intersect at a common face or not at all.

24 CHAPTER 2 — BACKGROUND AND RELATED WORK

Local Neighborhoods

Topological algorithms—such as the contour tree algorithm by Carr et al. [13]—utilize
the connectivity of simplicial complexes. Two important subsets of complexes that
are essential for such algorithms are the so-called star and link of a simplex. Both
subsets describe the local neighborhood of a simplex within a complex in any dimension.
Specifically, the star of a simplex is the subset of simplices that have the simplex as a
face (Fig. 2.3, first row). Note, a star is not necessarily a simplicial complex as it might
violate condition (i) of Def. 25. The union of the star with all its faces yields a simplicial
complex called the closed star.

The link of a simplex σ is defined as the subset of simplices of the closed star that are
disjoint from σ (Fig. 2.3, second row). The link can be interpreted as the set of simplices
in the local neighborhood of σ that are transitively connected through σ . For a function
that assigns a real number to the vertices of a simplicial complex, the link can again
be partitioned into two subsets: the lower and upper link. The upper link of a simplex
contains only simplices whose vertices have a strictly larger value then the ones of the
simplex, whereas the lower link only contains simplices whose vertices have a strictly
smaller value (Fig. 2.3, third row).

As described in Sec. 2.3, vertex stars and links can be used to efficiently, and indepen-
dently identify critical points on simplicial complexes—e.g., minima and maxima—since
these subsets represent the local topological neighborhood of their respective vertices.

Definition 26 (Star) The star of a simplex τ ∈ K is the set of all simplices of a simplicial
complex K that contain τ , i.e., St(τ) = {σ ∈ K | τ ≤ σ}.

Definition 27 (Closed Star) The closed star S̄t(σ) of a simplex σ is the union of St(σ)

and all its faces τ ≤ St(σ).

Definition 28 (Link) The link of a simplex σ ∈ K is the set of faces τ ∈ S̄t(σ) that have
an empty intersection with σ , i.e., Lk(σ) = {τ ∈ S̄t(σ) | τ ∩σ = /0}.

Definition 29 (Lower/Upper Link) For a function f that assigns a real number to the
vertices of a simplicial complexK, the lower link Lk−(σ) (respectively upper link Lk+(σ))
of a simplex σ ∈ K are the simplices of Lk(σ) whoes vertices all have a value stricly
lower (respectively larger) than the ones of σ .

2.2.1 DOMAIN REPRESENTATION 25

A
B

C
D

E
F

G

H

I J

K
L

A
B

C
D

E
F

G

H

I J

K
L

St(⟨H⟩)

A
B

C
D

E
F

G

H

I J

K
L

A
B

C
D

E
F

G

H

I J

K
L

St(⟨H,F⟩)

A
B

C
D

E
F

G

H

I J

K
L

A
B

C
D

E
F

G

H

I J

K
L

Lk(⟨H⟩)

A
B

C
D

E
F

G

H

I J

K
L

A
B

C
D

E
F

G

H

I J

K
L

Lk(⟨H,F⟩)

∗
∗

∗ 6
8

7
∗

5

3 4

∗
∗

∗
∗

∗ 6
8

7
∗

5

3 4

∗
∗

Lk+(⟨H⟩)

∗
∗

∗ 6
8

7
∗

5

3 4

∗
∗

∗
∗

∗ 6
8

7
∗

5

3 4

∗
∗

Lk−(⟨H⟩)

Figure 2.3: Examples that show the Star (first row) and Link (second row) of a vertex ⟨H⟩
and an edge ⟨H,F⟩, as well as the Upper Link (bottom left) and Lower Link (bottom
right) of vertex ⟨H⟩.

26 CHAPTER 2 — BACKGROUND AND RELATED WORK

Triangulations of Manifolds

As described previously, a simplicial complex enables the representation of topological
spaces via collections of simple pieces. However, the question arises under which
conditions a simplicial complex approximates a topological space well, and if such a
representation even exists. In order to compare a topological space X to a simplicial
complex K, consider the union of its simplices |K| =

⋃
K, which is referred to as the

underlying space of the complex. Then, K is said to be topologically equivalent to X
iff its underlying space is homeomorphic to X. In this case, the complex K is called a
triangulation of the space X.

This work focuses on a specific subset of topological spaces called d-manifolds, which
locally correspond to the Euclidean space Rd . Thus, every interior point of a d-manifold
has an open neighborhood that can be continuously transformed via a homeomorphism
to a d-dimensional open Euclidean ball, and every point on its boundary into a half-ball.
Predominant examples for such spaces are surfaces and volumes, which are 2-manifolds
and 3-manifolds, respectively. To be more precise, the methods proposed in this work
focus on simply connected d-manifolds, i.e., manifolds without holes, voids, and so forth.
As described in Sec. 2.3.2, this restriction is required for some topological concepts such
as the contour tree.

If a simplicial complex is a triangulation of a manifold—i.e., if their respective spaces
are homeomorphic—then the triangulation is also called a piecewise linear manifold.
Fig. 2.4 illustrates an example of a topologically equivalent and an inequivalent represen-
tation of a 2-manifold. The term piecewise linear will become clear in the next section,
which describes how data can be linearly interpolated within the complex.

Definition 30 (Underlying Space) The underlying space |K| of a set of simplicies K is
the union of the simplices.

Definition 31 (Triangulation of a Topological Space) A triangulation of a topological
space X is a simplicial complex whose underlying space is homeomorphic to X.

Definition 32 (Manifold) A topological space M is a d-manifold if every interior point
(respectively boundary point) x ∈M has an open neighborhood that is homeomorphic to
an open Euclidean ball (respectively half-ball) of dimension d.

Definition 33 (Piecewise Linear Manifold) A piecewise linear manifoldM is a triangu-
lation of a manifold M.

2.2.1 DOMAIN REPRESENTATION 27

Figure 2.4: Examples of a topologically equivalent simplicial complex (left) and an
inequivalent complex (right) triangulation of a 2-manifoldM consisting of two connected
components (middle). The simplicial complex on the right is not a triangulation ofM
as its underlying space is not homeomorphic toM. Specifically, the single vertex in the
center is not homeomorphic to the disc as any function that maps open sets of the center
component ofM to a single point is not injective. The same argument applies for the line
segment of the outer complex and the corresponding part of the outer component ofM.

Simulations of physical phenomena often compute values on the vertices of a pieces
linear manifold. Alternatively, vertices can also be connected by other elementary
pieces instead of simplicies, such as cubes or pyramids. These pieces, however, can be
decomposed into a set of simplicies, e.g., a cube can be represented by five tetrahedra.
Thus, piecewise linear manifolds are the prime domain representation for the remainder
of this manuscript, since they cover a wide range of common simulation setups.

28 CHAPTER 2 — BACKGROUND AND RELATED WORK

2.2.2 Value Representation
The simulations considered in this manuscript are based on a model of a function
f : X→ R that assigns to each point of a topological space X a real number. Each
such function is referred to as a scalar field. The concrete implementation of a simulation
discretizes the topological space X via a piecewise linear (PL) manifoldM, and then
computes a real-valued function f̊ : V → R on the vertices V ⊆M. Values inside a
higher dimensional simplex σ ∈M can be computed by a linear combination of the
vertex values of σ . Common weights for such a linear combination are the barycentric
coordinates of a point inside σ , which correspond to the fractions of hypervolumes [41].
A scalar field that in this way linearly interpolates the values inside a PL manifold is
called a PL scalar field (Fig. 2.5). These functions have two important properties: (i) they
can be computed very efficiently, and (ii) their gradient is piecewise constant.

The methodology described in this manuscript processes an enumeration of PL scalar
fields that are defined on the same PL manifold. In the context of simulations, each
element of the enumeration corresponds to an individual state, and the order represents
time. Such an enumeration is called a time-varying PL scalar field.

Definition 34 (Scalar Field) A scalar field is a function f : X→ R that assigns to each
point of a topological space X a real number.

Definition 35 (Barycentric Coordinates) For a d-simplex σ = ⟨v0, v1, . . . , vd⟩ and a
point p ∈ σ , the uniquely determined real coefficients (α0,α1, . . . ,αd) for which

p =
d

∑
i=0

αivi and 1 =
d

∑
i=0

αi

are called the barycentric coordinates of p relative to σ .

Definition 36 (Piecewise Linear Scalar Field) Let f̊ : V →R be a scalar field that assigns
to the vertices V of a PL manifoldM a real number. Then the value of any point p inside
a d-simplex σ = ⟨v0, v1, . . . , vd⟩ ∈M can be interpolated via the piecewise linear scalar
field f̂ : |M|→ R defined as

f̂ (p) =
d

∑
i=0

αi f̊ (vi)

where the coefficients αi are the barycentric coordinates of p relative to σ .

Definition 37 (Time-Varying Piecewise Linear Scalar Field) A time-varying PL scalar
field is an enumeration of PL scalar fields on the same PL manifold ordered by time.

2.2.2 VALUE REPRESENTATION 29

A

B

C D E F

1

3
4

2
3
4
5
6

4
5
65

0
1
2
3
4
5
6
7

0

1.2

4.7 6.7 5.7 6.53 4 52

2

2

2

2

2

2

2

2

2

2

2

0

1.2

4.7 6.7 5.7 6.53 4 52

2

2

2

2

2

2

2

2

2

2

2

0
1
2
3
4
5
6
7

Figure 2.5: Piecewise linear scalar field representation (bottom) of a scalar field (top).
Top: Scalar field f over manifold M with local extrema (A: 0), (B: 1.2), (C: 4.7), (D:
6.7), (E: 5.7), and (F: 6.5). Colors encode integer intervals for values from light blue
over dark red to bright yellow. Borders between intervals—also referred to as contours
(Sec. 2.3.1)—are illustrated by solid lines whose values are denoted by attached white
discs. Bottom: PL scalar field f̂ defined on a PL manifold M of M where values at
vertices (white discs) are probed using f . Note, contours (dashed lines) of f̂ for values 1
to 6 can be linearly interpolated on the simplicies ofM (vertices, edges, and triangles).

30 CHAPTER 2 — BACKGROUND AND RELATED WORK

2.3 TOPOLOGY-BASED FEATURE CHARACTERIZATION
This section builds up to a rigorous topological feature characterization for piecewise
linear scalar fields based on contour trees [108], starting from simple function value-based
segmentation to hierarchical feature decomposition. These concepts are described in
detail since they are fundamental to the proposed methodology. Specifically, the primary
feature characterizations used in this work are sublevel, level, and superlevel sets, which
correspond to domain subsets for which function values are either smaller than, equal
to, or larger than a predefined value, respectively. Essential structures of these sets are
so-called contours, which correspond to connected components of level sets, and are the
boundaries of sublevel and superlevel sets. In brief, the proposed approach segments,
simplifies, and extracts domain subsets based on these contours and their evolution, which
are represented by a topological data structure called the contour tree [108].

An outline of the entire characterization procedure is shown in Fig. 2.6. In various
applications, important regions in scalar fields (Fig. 2.6a left) can be characterized via
level, sublevel, and superlevel sets for certain values (Sec. 2.3.1). However, these sets
are very sensitive to that value, since they might drastically change in shape and number
even for small value variations. This problem leads to the study of topological changes of
these sets while they evolve during a continuous value sweep (Sec. 2.3.2). The evolution
of contours during the sweep are represented by the contour tree [108], where edges
correspond to individual contours, and nodes indicate when contours appear, merge, split,
and disappear (Fig. 2.6a right). The sweep also partitions the domain into regions, called
segments, that correspond to branches of the contour tree (Fig. 2.6b). A key result of
this line of research [87] is that contours only change topologically at so-called critical
points (Sec. 2.3.3). This fact makes it possible to efficiently compute the contour tree
and the corresponding domain segmentation in the piecewise linear setting (Sec. 2.3.4).
In general, however, datasets may exhibit noise and numerous features, which results
in complex contour trees and inaccurate domain segmentations. To address this issue,
persistent homology [24] is used to assign a significance measure, called the persistence,
to each edge of a contour tree (Sec. 2.3.6). The persistence of an edge can then be used to
recursively collapse edges—which represent feature groups—onto more significant edges
they are attached to—which represent the parents of these feature groups (Fig. 2.6c). This
process can be used to simplify the segmentation or even the original scalar field, which
enables a robust hierarchical feature characterization (Fig. 2.6d).

2.3 TOPOLOGY-BASED FEATURE CHARACTERIZATION 31

a)

A

B

C D E F

1

3
4

2
3
4
5
6

4
5
65

A

B
S0

S1

S2
C S3

D
E

F

0-
1-
2-
3-
4-
5-
6-
7-

b)

A

B

C D E F

1

3
4

2
3
4
5
6

4
5
65

A

B
S0

S1

S2
C S3

D
E

F

0-
1-
2-
3-
4-
5-
6-
7-

c)

A

D F

1

3

2
3
4
5
6

4
5
6

5

2
A

B
S0

S1

S2
C S3

D
E

F

0-
1-
2-
3-
4-
5-
6-
7-

d)

A

D F

l l

A

B
S0

S1

S2

C S3

D
E

F

l

0-
1-
2-
3-
4-
5-
6-
7-

Figure 2.6: Overview of the contour tree segmentation-based feature characterization:
based on the contour tree of a scalar field (a), the proposed method derives a branch
decomposition (b), which is filtered dynamically based on persistence (c) to derive
significant sublevel, level, and superlevel sets (d).

32 CHAPTER 2 — BACKGROUND AND RELATED WORK

2.3.1 Level, Sublevel, and Superlevel Sets
In many applications, interesting features in scalar fields f : X→ R can be characterized
as domain subsets for which the assigned values are smaller, equal, or larger than a
predefined value l (also called level or isovalue), and are referred to as sublevel sets
L−f (l), level sets L f (l), and superlevel sets L+f (l), respectively (Fig. 2.7b-d). For instance,
superlevel sets correspond to highly turbulent regions in flow fields (vortices), areas in
combustion simulations above a fuel consumption rate threshold (burning regions), parts
of the universe exceeding a certain dark matter density (halos), regions of a fluid with
a minimum viscosity (viscous fingers), or city blocks exhibiting elevated crime levels
(crime hotspots). The same holds true for areas with the exact level value (level sets),
and areas below a threshold (sublevel sets). To distinguish individual features—e.g.,
to differentiate between particular crime hotspots or dark matter halos—a component
segmentation Ṡ assigns to each connected component of the sets a unique label (colored
regions of Fig. 2.7). Connected components of level sets—also called contours—are of
special interest as they represent feature boundaries, i.e., the boundaries of sublevel and
superlevel set components. Depending on which set is actually used, a segmentation is
respectively called a sublevel or superlevel set component segmentation.

Definition 38 (Level / Sublevel / Superlevel Set) For a scalar field f : X→R and a level
l ∈ R (also called isovalue), the level, sublevel, and superlevel sets are defined as

L f (l) = {x ∈ X | f (x) = l}

L−f (l) = {x ∈ X | f (x)≤ l}, and

L+f (l) = {x ∈ X | f (x)≥ l}, respectively.

Definition 39 (Contour) A contour is a connected component of a level set.

Definition 40 (Component Segmentation) A component segmentation Ṡ : X→ Z for an
enumeration (L̇0, . . . , L̇n−1) of n distinct connected components L̇i ⊆ X is defined as

Ṡ(x) =

 i, if x ∈ L̇i for some i

−1, otherwise.

2.3.1 LEVEL, SUBLEVEL, AND SUPERLEVEL SETS 33

a)

A

B

C D E F

1

3
4

2
3
4
5
6

4
5
65

A

B
S0

S1

S2
C S3

D
E

F

0-
1-
2-
3-
4-
5-
6-
7-

b)

A

B

C D E F

l0

l0

A

B

S0
S1

S2
C S3

D
E

F

l0

0-
1-
2-
3-
4-
5-
6-
7-

c)

A

B

C D E Fl1 l1 l1

A

B
S0

S1

S2

C S3

D
E

F

l1

0-
1-
2-
3-
4-
5-
6-
7-

d)

A

B

C D E Fl2 l2 l2

A

B
S0

S1

S2
C S3

DEF
l2

0-
1-
2-
3-
4-
5-
6-
7-

Figure 2.7: Illustrations of an example scalar field (a), a sublevel set component seg-
mentation (b), and two superlevel set component segmentations for different levels (c-d).
The segmentations show that the chosen level has a significant impact on the number and
shape of features. Note, contours for these examples correspond only to the dashed lines
without their enclosed regions. The evolutions of these contours during a level sweep are
represented by the contour tree (right), which is introduced in the rest of this section.

34 CHAPTER 2 — BACKGROUND AND RELATED WORK

Computing Component Segmentations

To derive a component segmentation on a PL manifoldM based on a scalar field f and a
level l, one can iterate over the vertices ofM in two phases. First, all vertices that are
inside a component are assigned an intermediate label, and all other vertices are labeled
as the background. This is done very efficiently by probing f at the vertex locations. The
next iteration assigns a unique label to each edge connected group of vertices that have
an intermediate label. Note, this process only labels the vertices that are contained in the
components without computing the actual boundary geometry of the components (which
is describe in the next section). However, this simple algorithms is often sufficient.

Specifically, the procedure ComputeCS(f ,M, l, n, m, V) outlined in Alg. 1 derives
either a sublevel or superlevel set component segmentation depending on whether the
mode m is set to 1 or −1, respectively. To this end, it detects components, labels them
with a unique integer starting at n, and also represents each component via a vertex
that is inserted into a separate vertex set V that holds these component representatives.
Specifically, the lines 2-4 assign to each vertex either the value −1 if they belong to
the background, or the intermediate label −2 if they are contained in some component.
Subsequently, the lines 5-9 iterate again over all vertices and search for the intermediate
label −2, which indicates an unlabeled component. For each such unlabeled component,
the subprocedure FloodFill(S, M, v, n) assigns the current label n to any vertex that
is connected to the seed vertex v through a path on the edges ofM that only includes
vertices with the labels −2 or n. This subprocedure also returns a new vertex located at
the center of mass of the labeled vertices that represents the corresponding component.
Next, this vertex is inserted into V , and n is increased by one to uniquely label the next
component. Finally, the complete domain segmentation is returned in line 10.

Algorithm 1: ComputeCS(PLSF f , PLMM, Level l, Label n, Mode m, Vertices V)
1 S ← [] // Initialize Component Segmentation

2 // Compute Sublevel or Superlevel Sets based on m
3 foreach vertex v ∈M do

4 S[v] ←
{
−2 if (m > 0 ∧ f (v)≤ l) ∨ (m < 0 ∧ f (v)≥ l)
−1 otherwise

5 // Label Individual Components
6 foreach vertex v ∈M do
7 if S[v] =−2 then
8 V ← V ∪ { FloodFill(S,M, v, n) }
9 n ← n+1

10 return S

2.3.1 LEVEL, SUBLEVEL, AND SUPERLEVEL SETS 35

Triangulating Level Sets on Piecewise Linear Manifolds

There are several algorithms that derive sublevel, level, and superlevel set triangulations
of PL scalar fields defined on PL d-manifolds for d ≤ 3. A predominant example for three-
dimensional PL manifolds is the Marching Tetrahedra algorithm [22], which is a variation
of the original Marching Cubes algorithm [59] that uses tetrahedra (3-simplices) instead
of cubes to represent three-dimensional cells. Their counterparts for two-dimensional
manifolds are referred to as Meandering Triangles and Marching Squares, accordingly.
Even more recent isocontouring algorithms [17, 93, 109] are still based on the same
principle, which is summarized in the following.

The core concept of the marching tetrahedra algorithm is to independently check for
each tetrahedron if a level set passes through it by determining which vertices have smaller
or larger values than the corresponding level. This check results in 16 possible scenarios,
which can be reduced by summarizing symmetric vertex configurations to 3 representative
cases: a) no vertex value is smaller, b) one vertex value is smaller, and c) two vertex
values are smaller than a specified level (Fig. 2.8). In the first case, a tetrahedron does not
contribute any part of the level set surface. For the second and third case, a tetrahedron
is partitioned into two parts by a triangulation (blue triangles of Fig. 2.8) that separates
the smaller from the larger vertices. This procedure can be efficiently implemented via a
lookup table that returns for a vertex configuration the corresponding triangulation. Then,
to determine the actual geometry of the level set, the vertex positions of the triangulation
(white vertices of Fig. 2.8) are interpolated on the edges of the tetrahedron based on
the associated PL scalar field (colored vertices of Fig. 2.8). Finally, the collection of all
triangulations yields a piecewise linear approximation of the complete level set.

0
0

0

0

0
0

0

0

0
1

2

1

0
1

2

1

0
0

1

1

0
0

1

1

Figure 2.8: The three distinct types of vertex configurations of the Marching Tetrahedra
algorithm for a level set with level 0.5.

36 CHAPTER 2 — BACKGROUND AND RELATED WORK

2.3.2 Merge and Contour Trees
Although sublevel, level, and superlevel sets characterize significant regions in scalar
fields, their number and geometry depend heavily on the chosen level (Fig. 2.7c-d).
To understand this dependency, it is necessary to identify levels for which individual
contours appear, disappear, merge, split, or simply vary in shape. Tracking the evolution
of contours is the fundamental principle that enables the partition of the domain into
homogeneous regions that do not change topologically for certain level intervals, and to
aggregate these regions in a topological abstraction, called the contour tree [108].

Concept

In brief, the contour tree records the evolution of contours during a monotone level
sweep. The sweep process can be thought of as a landscape where water is continuously
rising from the lowest to the highest point (Fig. 2.9a left). Thus, connected parts of the
landscape that are below, at, or above the current water level correspond to sublevel, level,
and superlevel set components, respectively. As the water level rises, the connectivity
(topology) of the components changes when the water level reaches so-called critical
points, i.e., minima, maxima, and saddles for which components appear, disappear, and
merge/split, respectively. For instance, consider the evolution of sublevel set components
in Fig. 2.9b. First, two separate components appear at the minima A and B, which then
become connected exactly when the water level passes the critical value 2. If components
merge, then the resulting component inherits the label of the oldest component—in this
case A—which is referred to as the elder rule [25] (encoded by color in Fig. 2.9b-d). The
resulting component grows until the entire landscape is under water, which occurs when
the level passes the global maximum D. The evolution of these sublevel set components—
i.e., when they appear and join—is represented by the so-called join tree (Fig. 2.9b right).
Conversely, the split tree records the evolution of superlevel set components, i.e., when
areas above the water level split and disappear (Fig. 2.9c). In this example, the complete
landscape is at first above the water level, which then sequentially splits at saddles into
islands that disappear as soon as the water level passes their corresponding maxima.
This can also be interpreted as a reverse sweep that tracks the merging of superlevel set
components. Therefore, join and split trees are also referred to as merge trees, as they
both describe the merge of components; just for opposite sweep directions. The contour
tree—which summarizes the join and split tree—can be derived similarly by observing
the connectivity of contours (Fig. 2.9d).

2.3.2 MERGE AND CONTOUR TREES 37

a)

A

B

C D E F

1

3
4

2
3
4
5
6

4
5
65

A

B
S0

S1

S2
C S3

D
E

F

0-
1-
2-
3-
4-
5-
6-
7-

b)

A

B

C D E F

1

3
4

2
3
4
5
6

4
5
65

A

B
S0

D

0-
1-
2-
3-
4-
5-
6-
7-

c)

A

B

C D E F

1

3
4

2
3
4
5
6

4
5
65

A

S1

S2
C

S3

D
E

F

0-
1-
2-
3-
4-
5-
6-
7-

d)

A

B

C D E F

1

3
4

2
3
4
5
6

4
5
65

A

B
S0

S1

S2
C S3

D
E

F

0-
1-
2-
3-
4-
5-
6-
7-

Figure 2.9: The join, split, and contour tree (b-d right), as well as their respective domain
segmentations (b-d left) for an example scalar field (a). Sublevel and superlevel set
components are labeled by their corresponding minima and maxima, respectively. If
components merge or split, they pass on labels based on their lifetime, i.e., a merged
sublevel set component inherits the label of the oldest merging component, and a splitting
superlevel set component passes its label on to the component that will disappear last.

38 CHAPTER 2 — BACKGROUND AND RELATED WORK

Formal Description

Now that contour trees have been introduced conceptually, the rest of this section formally
describes the topological evolution of contours of scalar fields defined on manifolds. If a
manifold is not required to be simply connected—i.e., if it exhibits holes, voids, and so
forth—then the study of topological changes of contours translates to the more general
notion of Reeb graphs [87]. Similar to contour trees, Reeb graphs represent the evolution
of contours via edges and vertices, but they are also allowed to have cycles (loops). It has
been shown that Reeb graphs for simply connected manifolds are loop free [18], in which
case they are referred to as contour trees.

Formally, the Reeb graphR f represents the evolution of contours during a continuous
value sweep of a scalar field f defined on a manifold M. The definition of the Reeb
graph is based on an equivalence relation ∼ that assigns two points of M to the same
equivalence class iff they have the same value, and are elements of the same contour.
Imagine that these classes across all possible levels get individually contracted to a single
point, i.e., individual contours (equivalence classes) are represented via distinct points
that constitute curves along the increasing function values (Fig. 2.10). The graph that
results from this contraction is the Reeb graphR f , which is formalized via the quotient
space of M under the contour equivalence relation ∼ (Eq. 2.2). If M is simply connected,
then the Reeb graph has no cycles; in which case the graph is called a contour tree C f .
Symmetrically, the join tree C−f and the split tree C+f (collectively referred to as merge
trees) are defined in the same manner for equivalence relations based on sublevel and
superlevel set components, respectively. A common representation of these graphs are
one-dimensional simplicial complexes that triangulate their corresponding quotient space.

A split, join, or contour tree C∗f is associated with a domain segmentation φ : M→C∗f
that maps any point of M to its corresponding point in C∗f , and the tree scalar field
ψ : C∗f → R that maps any equivalence class of C∗f to the corresponding function value.
Moreover, the trees can be partitioned into groups of connected edges to derive a so-called
branch decomposition (Def. 43). Hence, a so-called merge/contour tree segmentation
S̃ = (C∗f ,φ ,ψ) completely partitions the domain into connected regions that correspond
to branches of C∗f (Fig. 2.9; Def. 44). These abstractions are essential to characterize
individual features based on level intervals, and to project the graphs onto new topo-
logical spaces, e.g., to derive a spatial embedding (Fig. 2.10), or an optimized layout
(Fig. 2.9, right).

The methodology described in this manuscript focuses on merge and contour trees.
An overview of additional theory and algorithms for Reeb graphs can be found in the
book by Edelsbrunner and Harer [25], and the habilitation thesis of Tierny [103].

2.3.2 MERGE AND CONTOUR TREES 39

Definition 41 (Quotient Space) Let ∼ be an equivalence relation on a topological space
X with topology TX ; let Y be the set of all equivalence classes of ∼ for X; and let
φ : X→ Y be a surjective function that maps each element x ∈ X to its equivalence class
[x] ∈ Y . Then, the topological space Y for set Y and the quotient topology

TY = { y⊆ Y | φ
−1(y) ∈ TX } (2.1)

is called the quotient space, which is denoted by Y= X/∼. Hence, the quotient topology
TY is the set of subsets y⊆ Y whose preimages φ−1(y) are open sets of X.

Definition 42 (Reeb Graph; Contour, Merge, Join, and Split Tree) For a scalar field f
defined on a manifold M, let L̇ f ,x(i) denote the contour of level set L f (i) that contains the
point x ∈M, and let ∼ be an equivalence relation between two points u,v ∈M such that

u∼ v ←→ [f (u) = f (v) ∧ u ∈ L̇ f ,v(f (v))]. (2.2)

Then, the Reeb graphR f is defined as the quotient space M/∼. Symmetrically, the join
tree C−f and the split tree C+f are defined in the same manner for equivalence relations
based on sublevel and superlevel set components, respectively. Join and split trees are
also referred to as merge trees. If M is simply connected, then the Reeb graph is loop
free and is called a contour tree C f .

f (x)

Figure 2.10: Illustration of the contraction process (left to right) of a 2-manifold M with
an associated height function (left) to the corresponding contour tree (right). This process
is formalized via the quotient space M/∼ for a contour equivalence relation ∼ (Eq. 2.2).
Some example equivalence classes of ∼ are shown by dashed lines, where each class gets
contracted to a single point (white discs). The union of all contracted points constitute
the underlying space of a graph; in this case the contour tree.

Definition 43 (Branch Decomposition) A branch decomposition of a one-dimensional
simplicial complex K is an enumeration B of connected simplicial complexes of K s.t.

(i) the union of all branches
⋃
B is equal to K; and

(ii) the intersection of any two distinct branches of B is either empty or a single vertex.

40 CHAPTER 2 — BACKGROUND AND RELATED WORK

Definition 44 (Merge / Contour Tree Segmentation) A merge/contour tree segmentation
S̃ = (C∗f ,φ ,ψ) of a scalar field f defined on a simply connected PL manifoldM consists
of a merge or contour tree C∗f , the corresponding domain segmentation φ :M→C∗f that
maps any point ofM to its associated point in C∗f , and the tree scalar field ψ : C∗f → R
that assigns to any point of C∗f the corresponding value of f .

2.3.3 Critical Points
Critical points are essential for computing merge and contour trees of scalar fields. For
a smooth function, critical points are located at points for which the gradient of the
function vanishes.* However, PL scalar fields require an alternative definition since
their gradient is piecewise constant. Such an alternative definition can be inferred from
Morse theory [72], which was originally derived for a special type of smooth real-valued
functions—called Morse functions—that are required to have non-degenerate† critical
points with distinct values.

The key result of Morse theory is that the topology of sublevel sets only change in
the local neighborhood of critical points [5, 72], i.e., when a level passes a critical value
(as demonstrated with the example of Fig. 2.9). This fact is the basis for the definition
of critical points of a PL scalar field f given on a PL manifoldM. First, note that if
it is required that critical points of f must have distinct values, then critical points can
only be located at vertices of M. This follows form the fact that any point inside a
higher dimensional simplex is mapped to a constant gradient vector.‡ A vertex v ∈M
with function value l = f (v) can then be classified solely based on the topology of its
local neighborhood. Specifically, the connected components of its lower and upper link
correspond to parts of the sublevel set L−f (l− ε) and superlevel set L+f (l + ε) for some
small ε > 0, respectively. If the lower or upper link is empty, then v must be a local
minimum or maximum, respectively (Fig. 2.11a-b). Otherwise, if the upper and lower link
are both single components, then the new sublevel and superlevel set components for level
l simply grow by absorbing v without a change in connectivity, and v is therefore called a
regular point (Fig. 2.11c). Finally, if the lower link consists of multiple components, then
the new sublevel set for level l will connect them locally at v, which corresponds to a
change in topology at a saddle point (Fig. 2.11d). This applies symmetrically for multiple

*The smooth setting requires numerous additional definitions; such as charts, smooth functions, and
differentiable manifolds. As the smooth case is not in the scope of this manuscript, it suffices to say
that in this setting it is possible to compute the continuously differentiable gradient of a function, which
corresponds to a vector pointing locally to the largest increase in function value.

†Degenerate critical points are defined later in the text.
‡The special case where the gradient is the zero vector implies that all points inside a simplex have the

same value, and thus can not be critical points by definition as they are required to have distinct values.

2.3.3 CRITICAL POINTS 41

upper link components and superlevel sets. Additionally, if the lower or upper link has
more than two components, then v is called a degenerate multi-saddle (Fig. 2.11e). Note,
some saddles might locally connect parts of the same component, and thus not change
the connectivity of the level set (Fig. 2.11f). These degenerate saddles are called false
saddles and are treated as regular vertices during merge tree computation [18, 36, 105].

∗
∗

∗
+

+
+

∗

v

+ +

∗
∗

∗
∗

∗
+

+
+

∗

v

+ +

∗
∗

a) Minimum

∗
∗

∗

∗

v

∗
∗

∗
∗

∗

∗

v

∗
∗

b) Maximum

∗
∗

∗
+

+
+

∗

v

∗
∗

∗
∗

∗
+

+
+

∗

v

∗
∗

c) Regular Point

∗
∗

∗
+

+ ∗

v
+

∗
∗

∗
∗

∗
+

+ ∗

v
+

∗
∗

d) Saddle Point

∗
∗

∗

+ ∗

v

+ +

∗
∗

∗
∗

∗

+ ∗

v

+ +

∗
∗

e) Multi-Saddle

+

v

+

v

f) False Saddle

Figure 2.11: Classification of a vertex v inside a piecewise linear Morse scalar field
based on the connectivity of its lower link (red), and upper link (blue). If the lower or
upper link is empty, then v is a minimum (a) or maximum (b), respectively. If both links
are single connected components, then v is a regular point (c). Otherwise at least one link
consists of more than one component, in which case v is a saddle (d-e). If a saddle would
locally connect only the same globally connected component, then the saddle is called a
false saddle (f). Note, this can not be determined locally.

42 CHAPTER 2 — BACKGROUND AND RELATED WORK

Definition 45 (Regular Point) A regular point of a PL scalar field is a vertex whose upper
and lower link are both non empty and simply connected.

Definition 46 (Minimum / Maximum) A minimum or maximum of a PL scalar field is a
vertex with an empty lower or upper link, respectively.

Definition 47 (Saddle Point) A k-saddle of a PL scalar field is a vertex v for which
either its lower or upper link consists of k+1 components, in which case v is called a
join or split saddle, respectively. Saddles with k > 1 are referred to as multi-saddles or
degenerate critical points.

However, to substantiate the previous classification of points—i.e., to transfer the
results of Morse theory—it is necessary to define the equivalent of a Morse function in
the PL setting. Hence, a PL scalar field is called a PL Morse scalar field iff (i) all its
critical values are distinct, and (ii) all critical points are non degenerate. These constraints
respectively ensure that sublevel set components appear, merge, and disappear only at
vertices with distinct values, and that at most two components merge for a critical value.
Obviously, such scalar fields rarely occur in practice, but it is possible to modify a PL
scalar field f given on a PL manifoldM such that it fulfills these requirements. The
first condition is satisfied if the restriction of f to the vertices ofM is injective. This
can be enforced by using simulation of simplicity (SoS) [31] to break ties between two
vertices by comparing their respective coordinates or index in an enumeration. The second
condition is violated if a saddle point is a multi-saddle, e.g., a monkey saddle which
connects three sublevel sets. In this case, the star of a multi-saddle can be re-triangulated
into multiple regular saddles via a method called multi-saddle unfolding [25]. Thus, it is
reasonable to assume that any piecewise linear scalar field can be modified to fulfill the
criteria of a piecewise linear Morse scalar field.

Definition 48 (Piecewise Linear Morse Scalar Field) A piecewise linear scalar field is
called a piecewise linear Morse scalar field iff

(i) all critical points have distinct values, and;

(ii) all critical points are non degenerate.

2.3.3 CRITICAL POINTS 43

44 CHAPTER 2 — BACKGROUND AND RELATED WORK

2.3.4 Merge Tree Computation
This section defines an algorithm for computing the merge tree of a PL Morse scalar
field f defined on a PL manifoldM. Even modern algorithms that utilize parallelism [14,
36, 52, 69, 73, 74] are still based on the principle that the topology of sublevel sets only
changes at critical points (Sec. 2.3.3). Thus, one way of computing the join tree is to
first sort all vertices by value in ascending order, and then iterate over all vertices to
sequentially add them to groups that represent the growing sublevel set components.
These groups represent the evolution of sublevel set components during the iteration, i.e.,
they appear at minima, grow for regular vertices, and merge at saddles that connect two
before disconnected components. This can be efficiently implemented via a union-find
data structure that maintains these groups [13]. The split tree of f corresponds to the join
tree of the inverse field − f , and can therefore be computed with the same procedure.

Alg. 2 outlines a procedure that simultaneously derives a branch decomposition B
and a spatial embedding of the join tree C−f . Specifically, the algorithm initializes B as an
empty set, creates a new union-find data structure G, sorts all vertices ofM in ascending
order, and then iterates over all vertices of the resulting vertex enumeration V̄ to construct
groups and branches. The vertices with the lowest and highest scalar value of a group
G ∈ G are respectively denoted by α(G) and ω(G). At the beginning of each iteration it
is assumed that

(i) every sublevel set component of the previous iteration is represented by a unique
group of G, and vice versa; and

(ii) for each group G∈G exists exactly one branch B∈B that contains α(G) and ω(G).

Each iteration processes a vertex v ∈ V̄ based on its type, which can be determined by
the number of its lower link components C (Definitions 45–47). Specifically, if C is
empty, then v is a minimum. Thus, a new group and a new branch are created that both
contain v (line 6-8). Otherwise, C contains one or two lower link components, where each
component is a subset of exactly one (possibly even the same) sublevel set component of
the previous iteration. Based on iteration assumption (i), line 11 retrieves for each lower
link component c ∈C the unique group G ∈ G that contains c. Next, the subprocedure
GetBranch returns the unique branch B ∈ B that contains α(G) and ω(G), which must
exist due to iteration assumption (ii). Line 13 then extends this branch by v and the
edge ⟨ω(G),v⟩ that connects v to the previously inserted vertex of G. Always choosing
and extending the oldest branch is known as employing the elder rule [25]. Then, v
is also inserted into G. Finally, line 15 actually checks if C contains two components
that belong to different sublevel set components of the previous iteration. If this is the
case, it is necessary to unify their respective groups. If the two components belong to

2.3.4 MERGE TREE COMPUTATION 45

the same sublevel set component, then v is called a false saddle as the connectivity of
the new component does not change by absorbing v, and therefore no further action is
necessary. Since each iteration preserves the iteration assumption, the algorithm can
proceed by induction until all vertices are processed, which yields the complete branch
decomposition B. A formal proof that the resulting graph C+f =

⋃
B is indeed the join

tree can be found in the work of Carr et al. [13]. This procedure can also be used to derive
the split tree by processing the inverted scalar field, or by symmetrically tracking the
connectivity of superlevel set components and upper link components.

The branches B yield a complete merge tree segmentation S̃ = (C∗f ,φ ,ψ) (Def. 44),
where the merge tree C∗f =

⋃
B is the union of all branches, and the domain segmentation φ

and tree scalar field ψ are defined explicitly by C∗f since the tree contains all vertices of
M (Fig. 2.12). In this case, C∗f is called an augmented merge tree. A task-parallel version
of this algorithm [36] is implemented in the Topology ToolKit [104]. In the following
chapters, merge tree segmentations are used to iteratively simplify f = ψ ◦φ to make
feature identification more stable, and to implement linking and brushing between the
trees and the feature domain.

Algorithm 2: ComputeAugmentedJoinTree(PLMSF f , PLMM)
1 B ← /0 // Initialize Branch Decomposition
2 G ← NewUnionFind()
3 V̄ ← SortVertices(M, f)

4 foreach vertex v ∈ V̄ do

5 C ← GetLowerLinkComponents(v,M, f)

6 if Size(C) = 0 then
7 NewGroup(G, v)
8 B ← B ∪ {v}
9 else

10 foreach component c ∈C do
11 G← FindGroup(G, c)
12 B ← GetBranch(B, α(G))
13 B ← B ∪ {⟨ω(G),v⟩, v}
14 G← G ∪ v

15 if Size(C) = 2 ∧ GetGroup(G, C[0]) ̸=GetGroup(G, C[1]) then
16 UnifyGroups(G, C)

17 return B

46 CHAPTER 2 — BACKGROUND AND RELATED WORK

The middle of Fig. 2.12 illustrates the join tree computation for the running example.
First, a blue and a red branch appear for the minima (A : 0) and (B : 1.2), respectively.
Then, the vertices with value 2 are sequentially added to the first branch where ties
in the sorting order are broken by simulation of simplicity (SoS) [31]. Thus, one of
these vertices (S0) will connect the two branches at some point during the iteration. The
concrete SoS implementation determines which vertex is actually chosen. Here, no other
vertex is added to branch B until it merges with branch A. The remainder of the algorithm
simply adds the remaining vertices and corresponding edges to the oldest branch they are
connected to, in this case A. The split tree is computed symmetrically by executing Alg. 2
with the inverted scalar field (Fig. 2.12 bottom). Hence, four distinct branches appear for
the maxima (D : 6.7), (F : 6.5), (E : 5.7), and (C : 4.7), which sequentially merge at the
saddle points (S3 : 5), (S2 : 4), and (S1 : 3). The oldest branch then absorbs the remaining
vertices in descending order, here D.

The described procedure automatically derives a spatial embedding of the merge
tree (Fig. 2.12 left). It is also possible to compute an optimized tree layout to minimize
the number of edge crossings and arrange edges based on the corresponding branch
decomposition [84] (Fig. 2.12 right). Moreover, vertices of merge trees can again be
reclassified based on the number of edges to vertices with lower value (called down arcs),
and higher value (called up arcs). Thus, vertices with no down or up arc in at least one of
the trees correspond to minima and maxima, respectively. These vertices have a special
context for a specific tree type, i.e., minima are leafs in the join tree, and maxima are leafs
in the split tree. Additionally, the global maximum and minimum are the respective roots
of join and split trees. A vertex is a regular point iff it has exactly one down and one up arc
in both trees. Vertices with more than one down or up arc in at least one of the trees are
called merge or split saddles, accordingly. This reclassification removes some degenerate
cases, such as false saddles. Next, a common post-processing step is to remove regular
points from the trees while preserving the graph connectivity in order to reduce their size.
In practice, however, edges often maintain lists of their corresponding regular points to
explicitly store the inverse map φ−1. After this procedure, the split tree still contains the
critical vertices of the join tree, and vice versa (nodes without labels in Fig. 2.12 right).
In the next step, both merge trees can be combined to yield the contour tree.

2.3.4 MERGE TREE COMPUTATION 47

A

B

C D E F3 4 52

2

2

2

2

2

2

2

2

2

2

2

A

B

C D E F3 4 52

2

2

2

2

2

2

2

2

2

2

2

A

B
S0

S1

S2
C S3

D
E

F

0-
1-
2-
3-
4-
5-
6-
7-

0

1.2

4.7 6.7 5.7 6.53 4 52

2

2

2

2

2

2

2

2

2

2

2

0

1.2

4.7 6.7 5.7 6.53 4 52

2

2

2

2

2

2

2

2

2

2

2

↑
True Saddle S0

False Saddle→

A

B
S0

D

0-
1-
2-
3-
4-
5-
6-
7-

0

1.2

4.7 6.7 5.7 6.53 4 52

2

2

2

2

2

2

2

2

2

2

2

False Saddle→
0

1.2

4.7 6.7 5.7 6.53 4 52

2

2

2

2

2

2

2

2

2

2

2

A

S1

S2
C

S3

D
E

F

0-
1-
2-
3-
4-
5-
6-
7-

Figure 2.12: Illustration of Alg. 2 that computes the join tree (middle) and split tree
(bottom) of a PL scalar field (top) by sequentially grouping/connecting vertices based
on their sorted values, and connectivity. Merge tree branches (colored edges) are bent to
prevent unnecessary edge crossings, and ties between vertex values in the sorting order
are resolved by also considering their spatial position. In this example, an order was
chosen that results in the least amount of edge crossings. Note, if two branches merge,
only the oldest one is continued based on the elder rule.

48 CHAPTER 2 — BACKGROUND AND RELATED WORK

2.3.5 Contour Tree Computation
Instead of explicitly computing the contour tree C f based on the function f , it is possible
to constructed C f by iteratively adding leafs and attached edges from the merge trees to
C f [13]. Specifically, each iteration processes one leaf of the split or join tree that is not
a split/join saddle in the other tree. Note, there always exists such a vertex as there are
more leafs than join/split saddles. First, C f is initialized as an empty set, and a queue
is filled with the leaf vertices of the merge trees, where a superscript denotes the actual
tree in which the vertex is a leaf. Lets assume a leaf v− from the join tree C−f is next in
the queue (the other case for a leaf v+ ∈ C+f is symmetrical). By definition, v− is not
the root of C−f nor a split/join saddle in C+f , and v− is connected to some vertex u ∈ C−f
via an up arc ⟨v−,u⟩. Then, the simplicies v−, u, and ⟨v−,u⟩ are inserted into C f while
skipping duplicate simplicies. Next, v− and ⟨v−,u⟩ are removed from C−f . At the same
time, v− in C+f is either connected to two vertices x,y ∈ C+f by a down and up arc, or v− is
connected to a single vertex z ∈ C+f (the current root of C+f). In the first case, v−, ⟨v−,x⟩,
and ⟨v−,y⟩ are removed from C+f , but a new edge ⟨x,y⟩ is inserted in C+f to preserve the
graph connectivity. In the other case, v− and ⟨v−,z⟩ are simply removed from C+f . This
way, each iteration produces valid join and split trees with the same set of vertices, which
is the required input for the next iteration. If at the end of an iteration new leafs appear
that fulfill the aforementioned criteria, then they are added to the queue. The contour
tree is complete when all vertices have been processed. Also note that this construction
process combines the merge tree segmentations into a contour tree segmentation.§ A
proof that the constructed graph is the contour tree of f can be found in the original paper
by Carr et al.[13].

Fig. 2.13 illustrates the contour tree construction process for the running example.
Initially, all leafs of the join and split tree are inserted into the queue. In the first step, the
leaf ⟨B−⟩ and its attached edge need to be removed from the join tree, as indicated by the
superscript. Hence, the simplicies ⟨B−⟩, ⟨S0⟩, and ⟨B−,S0⟩ from C−f are inserted into C f ;
the simplicies ⟨B−⟩ and ⟨B−,S0⟩ are removed from C−f ; and the simplicies ⟨B−⟩, ⟨A,B−⟩,
and ⟨B−,S0⟩ in C+f are replaced by the edge ⟨A,S0⟩. As no new leafs appear, nothing is
added to the queue. The next leaf ⟨F+⟩ from the split tree is processed symmetrically. In
step three, only the simplicies ⟨E+⟩ and ⟨E+,S3⟩ are added to C f , as ⟨S3⟩ is already an
element of C f . This iteration also creates the new leaf ⟨S+3 ⟩ in C+f that is not a join saddle
in C−f , and is therefore added to the queue. This process continues until all vertices are
processed, which yields the complete contour tree.

§An algorithm that can merge branch decompositions is described in the work of Pascucci et al. [84].

2.3.5 CONTOUR TREE COMPUTATION 49

Queue

1) [B−, F+, E+, D+, C+, A+]

A
− B

S0

D

Join Tree

A

S1

S2
C

S3

DEF

−

Split Tree

+ B
+S0

Contour Tree

2) [F+, E+, D+, C+, A+]

A

S0

D−

A

S1

S2
C

S3

DE−F

B
S0

+ S3

+F

3) [E+, D+, C+, A+]

A

S0

D
−

A

S1

S2
C

S3

D
−
E

B
S0

S3

+
E

F

4) [S+3 , D+, C+, A+]

A

S0

D

−

A

S1

S2
C

−
S3

D

B
S0

+ S2

S3

EF

5) [D+, C+, A+]

A

S0

− D

A

S1

S2
C

− D

B
S0

S2

S3

+ DEF

8) [S+1 , A+]

A

S0

−−

A

− S1

B
S0

S1

S2
C S3

DEF

9) [S+0 , A+]

A

−S0

A

−

+ A
B

S0

S1

S2
C S3

DEF

Figure 2.13: Iterative construction of the contour tree via graph operations on the join
and split tree. Each iteration moves a vertex (white disc) and an attached edge (dashed
line) from one merge tree to the contour tree, while updating both merge trees.

50 CHAPTER 2 — BACKGROUND AND RELATED WORK

2.3.6 Topological Simplification
As demonstrated previously, merge and contour trees are excellent tools to describe the
evolution of individual level, sublevel, and superlevel set components via edges between
critical points. In practice, however, all components are not equally important. Especially
datasets that contain noise—e.g., from numerical errors or measurement inaccuracies—
exhibit slight function value perturbations that are identified as valid critical points.
Therefore, the next step is to measure the significance of components (features) in order
to robustly rank, select, and remove them.

Branch Persistence and Critical Point Pairs

Persistent homology [24, 29] is a topological concept that robustly measures the signifi-
cance of features based on a sequence of nested sets, called a filtration. In the context of
PL scalar fields over simplicial complexes, filtrations are defined as sequences of subcom-
plexes that correspond to sublevel and superlevel sets for monotone level sweeps. The
goal of persistent homology is to measure how long individual groups exist during such
sequences. Specifically, this work focuses on the lifetime (the persistence) of individual
connected components. For instance, the level interval for which an individual superlevel
set component first appears at a maximum, until it disappears at a minimum or saddle that
connects it to an older (and therefore more persistent) component. Consider in Fig. 2.14
the maxima (F : 6.5) and (E : 5.7), and their corresponding superlevel set components for
the level interval (5,6.5]. Relatively speaking, in this interval the component containing
F with lifetime 1.5 is more significant than component E that has only a lifetime of 0.7;
this is also why the branch representing component E ends at the saddle, while branch F
continues (Sec. 2.3.4). However, the component of F is not older (less persistent) than
the component of maximum D, and so forth. This concept is symmetrically defined for
the edges of join and contour trees.

Note, the presented merge and contour tree algorithms and the resulting branch
decomposition B for a scalar field f = ψ ◦φ are already based on this concept. Thus,
each branch B ∈ B is associated to a unique critical point pair (u,v)—called a persistence
pair—that consists of the vertices u,v ∈ B at the endpoints of the branch where by
convention ψ(u) ≤ ψ(v). A common representation of these persistence pairs is a so-
called persistence diagram Pψ , i.e., a one-dimensional simplicial complex where each
persistence pair (u,v) is represented by an edge ⟨ (ψ(u),ψ(u)) , (ψ(u),ψ(v)) ⟩ and its
faces (Fig. 2.14 bottom left).

2.3.6 TOPOLOGICAL SIMPLIFICATION 51

a)

A

B

C D E F

1

3
4

2
3
4
5
6

4
5
65

A

B
S0

S1

S2
C

S3

D
E

F

0-
1-
2-
3-
4-
5-
6-
7-

b)

A

C D F

1

3
4

2
3
4
5
6

4
5
6

5

2

A

B
S0

S1

S2
C

S3

D
E

F

0-
1-
2-
3-
4-
5-
6-
7-

c)

A

D F

1

3

2
3
4
5
6

4
5
6

5

2

A

B
S0

S1

S2
C

S3

D
E

F

0-
1-
2-
3-
4-
5-
6-
7-

D

S0

B

C

S1

F

S2

E

S3

0
0-

1

1-

2

2-

3

3-

4

4-

5

5-

6

6-

D

S0

B

C

S1

F

S2

E

S3

0
0-

1

1-

2

2-

3

3-

4

4-

5

5-

6

6-

D

S0

B

C

S1

F

S2

E

S3

0
0-

1

1-

2

2-

3

3-

4

4-

5

5-

6

6-

Figure 2.14: Illustration of the topological simplification of a contour tree (a-c right), and
its corresponding domain segmentation (a-c left), based on thresholding the persistence
of branches (bottom left-right). Filtered branches that do not exceed the persistence
threshold (red dashed line) are iteratively collapsed onto preserved branches they are
connected to by setting the values inside the associated domain subsets (hatched areas) to
the corresponding saddle values.

52 CHAPTER 2 — BACKGROUND AND RELATED WORK

Removal of Critical Points

A powerful application of persistent homology is to modify an input scalar field such that
it no longer exhibits a selected set of critical points [6, 29, 30, 106]. The core concept
behind this approach is to set the values of the region associated with an extremum to the
value of its paired saddle. This process can be imagined by chopping of hills at saddles,
which removes the extremum and the associated saddle (Fig. 2.14). Persistence pairs that
correspond to branches of merge and contour trees provide an intuitive choice on which
critical points to remove since less persistent branches are attached to more persistent
branches, i.e., small hills emerge from larger hills. Thus, the branches B of a contour
tree C f that are below a persistence threshold (red dashed line in the bottom of Fig. 2.14)
can be iteratively collapsed onto more persistent branches, which results in a series of
simplified functions that lack the critical points of the filtered branches. Specifically, the
branches B between extrema and saddles that do not exceed the persistence threshold
are sorted by persistence and inserted into a queue B̄ in descending order. Each iteration
i ≥ 0 processes a branch B̄i with corresponding persistence pair (u,v), and as long as
there exists at least one branch above the persistence threshold, it is guaranteed that B̄i is
connected to a branch with higher persistence at the saddle s ∈ {u,v} located at one of
the endpoints of B̄i. Recall, the contour tree is associated with the domain segmentation
φ that maps any point of the domain to a point on the tree. Thus, it is possible to define a
new function f̂i that is identical to f̂i−1, expect that the pre-images of B̄i through φ−1 are
mapped to the constant value f̂i−1(s) of the saddle s, i.e.,

f̂i(x) =

 f̂i−1(s), if x ∈ φ−1(Bi)

f̂i−1(x), otherwise.

where f̂−1 := f . Note, this procedure handles the recursive collapsing of branches since
they are processed in descending order. This procedure creates plateaus with the constant
value of their corresponding saddles (hatched areas in Fig. 2.14). Based on the theory
described in the previous sections, these plateaus can not contain critical points, and
thus the contour tree computation will treat the plateaus as sets of regular points. Hence,
the contour tree and the scalar field have truly been simplified. Therefore, extracted
level, sublevel, and superlevel sets can now be reliably identified as valid features. To
summarize, persistence-based topological simplification is a robust tool to remove noise
and rank features. An efficient algorithm that can even remove an arbitrary selection of
critical points in any order is described in the work of Tierny et al. [106], and is available
in the Topology ToolKit [104].

2.3.6 TOPOLOGICAL SIMPLIFICATION 53

54 CHAPTER 2 — BACKGROUND AND RELATED WORK

2.4 FEATURE TRACKING
The previous sections defined for a PL scalar field a robust topology-based feature
characterization that derives and simplifies the corresponding contour tree segmentation.
This section now introduces feature tracking approaches that aim to correlate features
across a sequence of PL scalar fields, e.g., ordered samples of a time-varying scalar field.

This work focuses on feature tracking techniques that iteratively determine the rela-
tionship between features of subsequent PL scalar fields defined on the same PL manifold.
Such sequences occur frequently in practice, as numerical methods advance scalar fields in
steps, and machines record measurements in discrete time intervals. This makes tracking
a challenging task as the results depend heavily on the difference between the scalar fields
(the temporal resolution), and on the used feature characterization (the feature stability),
e.g., the more two timesteps are apart, the more uncertain is the relationship between
features. Moreover, even if features of subsequent fields are likely correlated, it is always
possible to construct a counter example of an intermediate timestep that contradicts the
assumption. Hence, every tracking method inevitably incorporates uncertainty. Therefore,
it is assumed that the fields do not vary drastically, and that all fields exhibiting significant
feature evolutions are elements of the sequence.

As introduced in earlier chapters, features are often characterized via sublevel or
superlevel sets. Tracking methods for such features can be roughly categorized into
geometrical and topological approaches [40, 70, 86, 100]. Respective prime examples are
methods based on spatial overlap [7, 12, 63, 65, 66, 92, 96, 97, 99, 114], and critical point
matching [10, 23, 27, 79, 100]. For instance, the top of Fig. 2.15 illustrates a time-varying
scalar field whose only maximum is moving from the left to the right side of the domain,
where superlevel sets are shown via distinct colors. The chosen level directly influences
the overlap-based tracking as overlaps become less likely at high levels. Algorithms
that match the corresponding critical points of the superlevel sets perform better in this
case, as all three critical points can be identified as single moving feature, independent
of the level. In general, however, no approach always performs better. Instead, one has
to evaluate the implications of the chosen strategy. Overlap-based algorithms are very
sensitive to the temporal resolution and the feature geometry, but guarantee that at least
parts of matched features resided at the same spatial location. However, if the temporal
resolution is too low, then even overlapping features might actually be distinct entities,
or features might not overlap at all. Critical point matchers are not restricted to spatial
overlap and incorporate additional assumptions to match features, but their accuracy relies
therefore heavily on the implementation of these assumptions.

2.4 FEATURE TRACKING 55

x

f (x)

0
0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

ti

x

f (x)

0
0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

ti+1

x

f (x)

0
0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

ti+2

x

f (x)

0
0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

ti→ ti+1

x

f (x)

0
0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

ti+1→ ti+2

tti ti+1 ti+2

Tracking Graph

x

f (x)

0
0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

ti→ ti+1

x

f (x)

0
0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

ti+1→ ti+2

tti ti+1 ti+2

Tracking Graph

Figure 2.15: Spatial overlap-based tracking of superlevel sets (colored regions) for level
0.6 (middle) and 0.3 (bottom) of a one-dimensional time-varying scalar field (top) with
a single maximum (red disc) that moves over time from the left to the right side. Note,
the level has a significant impact on the feature correlation since the level impacts the
volume of features, i.e., the likelihood of an overlap. Thus, features might incorrectly be
identified as distinct entities (middle left). Features and their relationship over time are
represented by tracking graphs (middle right and bottom right).

56 CHAPTER 2 — BACKGROUND AND RELATED WORK

2.4.1 Tracking Graphs
No matter which tracking method is actually used, the resulting correlations are recorded
via a topological abstraction called a tracking graph T (Def. 49) [12, 92, 114], i.e., a
one-dimensional simplicial complex whose vertices correspond to individual features,
and whose edges indicate a relationship between them. Thus, T represents the temporal
evolution of features—i.e., when they appear, disappear, merge, and split—not unlike
the contour tree, which records the evolution of features across levels instead of time.
The vertices V of T are also associated with the map λ : V → N that assigns each vertex
(feature) a unique label across the entire sequence, and the map τ : V → N that records
for a vertex the index of its corresponding scalar field inside the sequence. Vertices and
edges might also store additional feature and tracking information, such as the feature
size, center of mass, bounding box, or the amount of spatial overlap. Just like vertices of
contour trees, vertices of T can be labeled as birth, death, split, merge, and regular vertices
if they have no predecessor, no successor, multiple predecessors, multiple successors, or
exactly one predecessor and successor, respectively. Furthermore, T can be decomposed
into a branch decomposition B (Def. 43), where branches represent the evolution of
individual features across multiple timesteps. Specifically, new branches emerge at birth
nodes, and merging branches pass on the label of the oldest branch. If a branch splits,
then its label is passed on to the branch with the longest lifespan, and the other branches
are assigned new labels. Alternatively, branch labels could also be inherited based on
other metrics; such as the amount of spatial overlap or the likelihood of the matching.
These metrics enable again the application of persistent homology.

A common tracking graph visualization is a 2D embedding, where one axis represents
time, and the other axis is solely used to arrange an optimized graph layout (Fig. 2.16
right). To follow the evolution of individual features, and to link the tracked features
with the graph, both can be colored based on the feature or branch label map. The width
of edges can also encode a metric such as the amount of spatial overlap or the size of
features (Fig. 2.16d).

Definition 49 (Tracking Graph) Let V be a set of vertices, and let the sequence map
τ : V → N assign to each vertex a natural number (e.g., a time index). Then, a tracking
graph T is a one-dimensional simplicial complex consisting of the vertices V , and any
edge set E s.t. ∀⟨u,v⟩ ∈ E : τ(u) = τ(v)− 1. T is also associated with the injective
feature label map λ : V → N that assigns to each vertex of T a unique label, and T can
be decomposed into branches B.

2.4.1 TRACKING GRAPHS 57

a)

C

B

A

ti

G

F
D E

ti+1

K

J
I
H

ti+2

b)

C

B

A

ti

G

F
D E

ti+1

K

J
I
H

ti+2

A

D

E

H

ti ti+1 ti+2

Tracking Graph

c)

C

B

A

ti

G

F
D E

ti+1

K

J
I
H

ti+2

B F I

ti ti+1 ti+2

Tracking Graph

d)

C

B

A

ti

G

F
D E

ti+1

K

J
I
H

ti+2

C G J

K

ti ti+1 ti+2

Tracking Graph

Figure 2.16: Spatial overlap-based tracking of superlevel sets (colored regions) of a
two-dimensional time-varying scalar field (a) for three different levels (b-d). Figure b-c
use color to represent the unique labels assigned by the feature label map λ , whereas
Figure d is colored based on the branch decomposition B. In this example, branch labels
are inherited based on the largest amount of spatial overlap, which can additionally be
encoded by the width of the tracking graph edges. Coloring features and the tracking graph
based on the branch decomposition makes it easy to follow the evolution of individual
features, and provides a link between the graph and the spatial domain.

58 CHAPTER 2 — BACKGROUND AND RELATED WORK

2.4.2 Tracking via Spatial Overlap
A simple—yet effective—tracking concept is to match features whose volumes reside at
least partially at the same spatial location [7, 12, 63, 65, 66, 92, 96, 97, 99]. Samtaney
et al. [92] are among the first authors who used this method to track and visualize the
evolution of sublevel sets in computational fluid dynamics simulations. Current tracking
frameworks are still based on the same principle, such as the work of Bremer et al. [12]
who track overlapping burning cells in large-scale combustion simulations, where cells
are defined as areas exceeding a fuel consumption rate threshold, i.e., superlevel sets.
Another example is the global tracking algorithm proposed by Saikia et al. [91] that
matches regions based on the amount of spatial overlap.

In their core, these algorithms need to determine the overlap between features of
subsequent scalar fields. Using the topology-based feature characterization introduced
in Sec. 2.3.1, this requires computing on the same PL manifoldM the overlap between
two component segmentations Ṡ0 and Ṡ1 (Def. 40). Such segmentations for a PL scalar
field f , a fixed level l, an initial component label n, and a mode m can be computed
with the procedure ComputeCS(f , M, l, n, m, V) outlined in Alg. 1. This procedure
also inserts into a vertex set V for each component a representative that is located at the
component center, and the mode m determines if the procedure computes a sublevel or
superlevel set component segmentation. For example, Fig. 2.17 illustrates two compo-
nent segmentations defined on a uniform rectangular grid, where vertices are drawn as
squares containing their respective labels (the background label −1 is omitted), and the
representatives of the components (colored regions) are shown via red discs. Based on
that feature characterization, the procedure ComputeOverlap(Ṡ0, Ṡ1,M, V , E) described
in Alg. 3 simultaneously iterates over Ṡ0 and Ṡ1 to insert into a set E edges between
the representatives of overlapping components. To determine these representatives, it is
assumed that each component has a unique label in both segmentations, so that the subpro-
cedure getVertex(V , q) can return the unique vertex v ∈ V that represents the component
with label q. However, when components merge or split, then their respective centers
“jump” to new locations. To differentiate between actual component movement and these
jumps, edges of the tracking graph are either drawn as solid or dashed lines, respectively
(Fig. 2.17 right). The primary tracking procedure TrackingViaOverlap(F,M, l, m) of
Alg. 4 then executes these subroutines iteratively for a sequence of PL scalar fields F to
derive the corresponding tracking graph that consists of the resulting sets V and E .

2.4.2 TRACKING VIA SPATIAL OVERLAP 59

Algorithm 3: ComputeOverlap(CS Ṡ0, CS Ṡ1, PLMM, Vertices V , Edges E)
1 foreach vertex v ∈M do
2 if Ṡ0[v]≥ 0 ∧ Ṡ1[v]≥ 0 then
3 E ← E ∪{ ⟨ GetVertex(V, Ṡ0[v]), GetVertex(V, Ṡ1[v]) ⟩ }

4 return

Algorithm 4: TrackingViaOverlap(TVPLSF F̄ , PLMM, Level l, Mode m)
1 V ← /0 // Tracking Graph Vertices
2 E ← /0 // Tracking Graph Edges
3 n ← 0 // Component Label Counter

4 // Compute First Segmentation
5 Ṡ0← ComputeCS(F̂0,M, l, m, n, V)

6 // Compute Overlap Across Sequence
7 for i ← 1 to Size(F̄) do
8 Ṡ1← ComputeCS(F̄i,M, l, m, n, V)
9 ComputeOverlap(Ṡ0, Ṡ1, V, E)

10 Ṡ0← Ṡ1

11 return (V, E)

·
·
·
·
·
·
·
·

·
·
·
·
·
·
·
·

·
·
·
·
·
·
·
·

·
·
·
·
·
·
·
·

·
·
·
·
·
·
·
·

·
·
·
·
·
·
·
·

·
·
·
·
·
·
·
·

·
·
·
·
·
·
·
·

ti

0

0

0

0
0

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

·
·
·
·
·
·
·
·

·
·
·
·
·
·
·
·

·
·
·
·
·
·
·
·

·
·
·
·
·
·
·
·

·
·
·
·
·
·
·
·

·
·
·
·
·
·
·
·

·
·
·
·
·
·
·
·

·
·
·
·
·
·
·
·

ti+1

3

3

3

3
3

4

4

4

4

4

4

4

4

4

4

4

4

44

·
·
·
·
·
·
·
·

·
·
·
·
·
·
·
·

·
·
·
·
·
·
·
·

·
·
·
·
·
·
·
·

·
·
·
·
·
·
·
·

·
·
·
·
·
·
·
·

·
·
·
·
·
·
·
·

·
·
·
·
·
·
·
·

overlap

0,3

0,3

1,4

1,4

1,4

1,4

1,4

2,4

2,4

2,4

2,4

2,4

0

1

2

3

4

Figure 2.17: Overlap-based tracking can be efficiently computed by simultaneously
iterating over two segmentations while recording concurrently present feature labels.
Individual components (colored regions) are represented via new vertices located at
their centers (red discs), which are connected by an edge (red lines) iff their respective
components overlap. Edges that share a vertex are drawn as a dashed line in order to
differentiate between feature movement and split/join events.

60 CHAPTER 2 — BACKGROUND AND RELATED WORK

Tracking Hotspots in Event Datasets

Overlap-based tracking is also used in the initial work [63, 65] that later evolved to the
more general and robust methodology presented in this manuscript [66]. Specifically, it
has been shown that evolving disease and crime hotspots can be identified as overlapping
superlevel sets of spatio-temporal kernel density estimates (KDEs) [65]. For each timestep,
a two-dimensional density estimate is sampled on vertices of a uniform rectangular grid
to derive a continuous PL scalar field approximation of an unstructured set of n points
P = {e1, . . . , en}, where each point ei = ((xi,yi), ti) ∈ P ⊂ R2×R corresponds to an
event with a spatial and temporal coordinate. Based on the underlying scenario, analysts
are able to adjust the used KDE function

KDE(x,y, t) =
1

nht h2
s

n

∑
i=1

KT

(
ti− t

ht

)
KS

(
xi− x

hs
,
yi− y

hs

)
(2.3)

by choosing appropriate spatial and temporal kernels KS and KT , as well as bandwidths
hs and ht , respectively. A common temporal kernel is a symmetric triangular function

KT (u) = (1−|u|)1{|u|<1} (2.4)

where 1 is the indicator function. This kernel incorporates the fact that the probability of a
new event at time t is in some way proportional (in this case linear) to the number of other
events that occur shortly before or after t. A common spatial kernel is the multivariate
multiplicative Epanechnikov kernel

KS(u,v) =
9

16
(1−u2)(1− v2)1{ |u|<1 ∧ |v|<1 } (2.5)

that linearly weights events based on their distance to the sample point. The impact of
events in both kernels are controlled by the spatial and temporal bandwidths, e.g., large
bandwidths smooth the resulting estimate and thus limit the discriminability between
hotspots, whereas small bandwidths make hotspot detection more unstable. Therefore,
bandwidths have to be chosen carefully based on the underlying scenario. For instance,
Lukasczyk et al. [65] chose for a foot-and-mouth disease (FMD) case study a spatial and
temporal bandwidth of ts = 10 km and th = 14 days to respectively incorporate the USDA
suggested quarantine perimeter of infected live stock, and the FMD incubation period.
Hotspots can then be identified as regions exceeding a density threshold, which can even
be further filtered by persistence (Fig. 2.18).

2.4.2 TRACKING VIA SPATIAL OVERLAP 61

Another advantage of the described tracking algorithm is that it simultaneously
computes a spatial projection of the tracking graph by positioning its vertices at the
hotspot centers (Fig. 2.19). This provides a comprehensible summary on where hotspots
appear, move, merge, split, and disappear. As mentioned earlier, solid lines represent
moving hotspots, whereas dashed lines indicate where hotspots join and merge, which
causes a noticeable discontinuity of the hotspot centers. To improve the encoding of
the temporal channel, critical events are also tagged with a timestamp, and the varying
hotspot sizes are represented by the thickness of edges.

Feb 28th Mar 5th Mar 22th Apr 23th

Figure 2.18: Density estimates of foot-and-mouth disease (FMD) outbreaks in northern
Cumbria county (UK) at four different dates during the 2001 FMD epidemic. Individual
hotspots (colored regions) are identified as areas exceeding a minimum outbreak density
threshold (outermost contour). Moreover, hotspots are consistently colored according to
a branch decomposition that is derived based on the lifetime of hotspots.

Figure 2.19: Spatial embedding of a
tracking graph that represents the evolu-
tion of foot-and-mouth disease hotspots
shown in Fig. 2.18. Edges are colored
according to the same branch decom-
position. Solid lines represent moving
hotspot centers, while dashed lines in-
dicate when hotspots merge and split.
The graph clearly shows that the largest
hotspot (blue) appeared in Longtown at
February 28th, merged with the orange
hotspot at March 8th, and then slowly
regresses until the end of April when
the epidemic got under control.

62 CHAPTER 2 — BACKGROUND AND RELATED WORK

Tracking Viscous Fingers in FPM Simulations

Follow-up work demonstrated again that the methodology of identifying features as
superlevel sets and tracking them via spatial overlap is effective in practice. For instance,
the extended approach described in Lukasczyk et al. [63] characterizes the process of
viscous fingering, which is prominent in many fields of science and engineering [20, 33];
including geology, hydrology, and chromatography. More precisely, viscous fingering
is an instability phenomenon that occurs at the interface between two fluids of distinct
viscosity—e.g., when a more viscous fluid is injected into a less viscous one—and is
characterized by the formation of distinctive finger-like structures, which are called
viscous fingers (colored regions in Fig. 2.21). Identifying and tracking these fingers helps
to understand the mixing process as their geometrical evolution describes the penetration
of the less viscous fluid.

The 2016 scientific visualization contest [42] provided an ensemble of finite pointset
method (FPM) simulations that model the mixing process of salt solutions inside a water
filled cylinder with an infinite salt supply at its top. Each FPM simulation consists of a set
of points that are advected over time and store the salt concentration value at their current
location (Fig. 2.20). As soon as the salt mixes with the water, the resulting solutions
sink down to the bottom as they have a higher density than the surrounding water. Tasks
of the contest included the detection of viscous fingers, and the visualization of their
evolution across the simulation runs. To address these tasks, the initial approach described
in Lukasczyk et al. [65] was extended to the three-dimensional setting in Lukasczyk et
al. [63]. First, a pre-processing step computes a kernel density estimate—or alternatively
an interpolation—of the points to derive a connected PL scalar field representation of
the data. Next, the method derives superlevel sets of the resulting salt concentration
scalar fields that exceed a user-specified concentration level. Removing the salt supply
(dark gray regions in Fig. 2.21) from the derived superlevel sets yields several connected
components that correspond to the individual viscous fingers (colored regions in Fig. 2.21).
Next, tracking the fingers via spatial overlap generates tracking graphs that effectively
summarize their evolution (Fig. 2.21 middle). For instance, the simulation illustrated in
Fig. 2.21 exhibits one primary finger structure (orange), form which other large fingers
emerge. The tracking graph also clearly indicates where completely separate fingers
evolve, such as the blue finger from timestep 70 to 80 (bottom right of the tracking graph).

2.4.2 TRACKING VIA SPATIAL OVERLAP 63

Figure 2.20: One timestep of a FPM simulation
of the 2016 scientific visualization contest [42] that
models the process of viscous fingering inside a wa-
ter filled cylinder with an infinite salt supply at its top.
The simulation advects roughly two million points
that store the salt concentration value at their current
location. To reduce clutter, the current frame only
shows points that exceed a salt concentration thresh-
old of 100, where concentration values are encoded
by the size and color of points. Computing a 3D ker-
nel density estimate of the points on a uniform grid
yields a continuous data representation (Fig. 2.21).

20

20

22

22

24

24

26

26

28

28

30

30

32

32

34

34

36

36

38

38

40

40

42

42

44

44

46

46

48

48

50

50

52

52

54

54

56

56

58

58

60

60

62

62

64

64

66

66

68

68

70

70

72

72

74

74

76

76

78

78

80

80

22 23

24

24

25

26

26

27

28

28

28

29

29

29

29

29

29

30

30

31

31

31

33

34

34

35

35

35

36

36

36

37

37

38

40

40 41 42 43

44

44

45

45

45

46

47

47

48

50

50 51

51

51

52

52

52

54

54

54

55

55

55

56

56

56

57

57

58

59

59

60

61 62

62

62

62

63

63

64

64

65

66

66

66

66

66

66

66

67

67

67

67

68

68

68

68

68

69

69

69

69

70

70

71

71

71

71

72

72

73

73

74

74

75

75

76

76

76

76

77

78

78

78

79 80

80

80

80

80

80

80

80

Figure 2.21: Illustration of a FPM simulation whose points have been processed by a
kernel density estimator to provide a continuous data representation. Viscous fingers can
then be identified and tracked via spatial overlap of superlevel sets above salt concentration
level 10. As shown by the feature images (top and bottom), the branch decomposition of
the tracking graph (middle) effectively illustrates when individual viscous fingers appear
(discs), disappear (discs), merge (diamonds), and split (diamonds).

64 CHAPTER 2 — BACKGROUND AND RELATED WORK

Instead of using the y-axis of the tracking graph solely for layout purposes, it can
also encode some additional metric. For example, the y-axis of Fig. 2.22 encodes the
average z-position of a finger to illustrate how salt solutions sink down to the bottom of
the cylinder. Obviously, complex tracking graphs result in cluttered visualizations. To
cope with this problem, fingers can be filtered by various metrics; such as persistence,
size, or location. More effectively, by integrating the tracking graph and the rendering
window of the fingers in a visual analytics framework enables analysts to interactively
explore the graph, rotate the spatial rendering of the fingers, and change filter criteria as
well as the salt concentration threshold.

Limitations

The main limitation of tracking sub- and superlevel set components based on spatial
overlap is that the chosen level significantly impacts the number and shape of features,
and thus the structure of the tracking graph. Updating the level also requires recomputing
the tracking graph and rerendering the features. Moreover, tracking graphs for numerous
features might also be extremely complex and can not be visualized without clutter.
Those limitations are the primary motivations for the methodology presented in this
manuscript. Specifically, Ch. 3 introduces a novel approach to characterize and visualize
feature evolution across multiple levels in one compact representation, and Ch. 4 presents
a strategy to store feature images in a structured database to later compose 3D views
based on existing imagery instead of actually rendering features. Ch. 5 then describes
a more efficient way to compute and interact with complex tracking graphs based on a
combination of both approaches.

22

22

24

24

26

26

28

28

30

30

32

32

34

34

36

36

38

38

40

40

42

42

44

44

46

46

48

48

50

50

52

52

54

54

56

56

58

58

60

60

62

62

64

64

66

66

68

68

70

70

72

72

74

74

76

76

78

78

80

80

Figure 2.22: Tracking graph of Fig. 2.21 where the x-axis, the y-axis, and the line
thickness encode time, average z-position of a finger, and finger volume, respectively.

2.4.3 TOPOLOGY-BASED TRACKING APPROACHES 65

2.4.3 Topology-Based Tracking Approaches
The previous section described a commonly used tracking technique based on spatial
overlap, which is also used in the preliminary work that preceded the methodology
described in this manuscript. Although this approach works well for the presented
applications, it is not necessary true that two features are related if and only if they
share some spatial overlap, e.g., if the temporal resolution is too low, then fast moving
features might not overlap, or overlapping features might actually be distinct entities.
This section describes techniques that correlate features based on topological abstractions,
such as contour trees [12, 79, 114], persistence pairs [10, 100], Jacobi sets [23, 26, 27],
Morse-Smale complexes [11, 28, 38, 53], and higher-dimensional isosurfaces [45].

An essential limitation of explicit overlap-based tracking techniques is the necessity
to re-compute feature geometries every time parameters of the feature characterization
change—e.g., the level for a superlevel set segmentation. Moreover, it is often infeasible
to store every state of a large-scale simulation due to bandwidth and disk space constraints,
which makes it impossible to explicitly re-compute feature boundaries. This triggered
a line of research that aims to compute and store general tracking information during
the simulation to efficiently derive tracking graphs post hoc without reprocessing the
original data [12, 79, 114]. A prime example of such an approach is the so-called
meta-graph [114] that is computed at simulation runtime to record the spatial overlap
of features for discrete parameter intervals, i.e., this approach aggregates features for
adjacent parameter values into groups and tracks them together. During post hoc analysis,
meta-graphs are then used to determine the relationship between specific features by
looking up the relationship of their respective groups. Hence, the accuracy of the tracking
depends on the resolution of the parameter intervals. Sec. 5.2.1 describes an adaption of
this approach that enables the efficient post hoc computation of nested tracking graphs
based on merge tree segmentations.

Another strongly related tracking approach is the critical point matching algorithm
proposed by Oesterling et al. [79] that actually computes the time-varying merge tree in
arbitrary dimensions. Their approach is based on the fact that the structure of the merge
trees only changes when the sorting order of adjacent tree vertices changes. Based on this
fact, they determine a sequence of local updates that iteratively transform the merge trees
over time. The resulting trees are visualized by plotting a 1D landscape profile for each
timestep and connecting its peaks with lines to illustrate the evolution of all critical values
across time. However, computing time-varying merge trees in this fashion is extremely
expensive, and the resulting visualizations suffer from cluttering and occlusion, which
makes the approach currently less suited for interactive systems and large datasets.

66 CHAPTER 2 — BACKGROUND AND RELATED WORK

If features boundaries correspond to level sets for a fixed level, it is also possible
to consider time as an additional dimension and compute the Reeb graph of the higher-
dimensional feature domain [12, 45, 65, 112]. Edges of the Reeb graph then correspond to
individual features and vertices indicate when features appear, merge, split, and disappear,
i.e., in this case the Reeb graph is effectively the tracking graph. For instance, Bremer
et al. [12]—and later Weber et al. [112]—analyze and track flame fronts in combustion
simulations by computing the four-dimensional space-time Reeb graph.

In contrast to contour tree segmentations and Reeb graphs that partition the underlying
manifold based on the evolution of level sets, the Morse-Smale complex partitions the
manifold based on the gradient of a scalar field [11, 28, 38]. The central property of each
Morse-Smale complex cell is that integral lines inside a cell have the same start and end
point, which are critical points of the scalar field. Especially if feature boundaries coincide
with the gradient, a Morse-Smale segmentation effectively separates individual features,
which can subsequently be tracked by spatial overlap or other matching algorithms [53].

Recently, Soler et al. [100] proposed to compute the newly introduced lifted Wasser-
stein distance between persistence pairs to derive an optimal matching between features.
In contrast to other global matching metrics—such as the original Wasserstein metric [46]
or the Earth mover’s distance [44]—the lifted Wasserstein metric also includes geometric
properties of the spatial embedding of the persistence pairs to improve the tracking ac-
curacy, and to speed up the computation. Compared to overlap-based techniques, their
results indicate that this method is more stable for low temporal and spatial resolutions.
However, this approach aims to establish a one-to-one relationship between features, thus,
merging and splitting features have to be matched in a required post processing step.
As described later in Ch. 3, the matched features do not necessarily satisfy the nesting
property (Def. 50), which is why this method can not be trivially integrated into the
proposed methodology. Yet, extending the method to fulfill the nesting property appears
fruitful, and can be addressed in future work.

2.4.3 TOPOLOGY-BASED TRACKING APPROACHES 67

68 CHAPTER 2 — BACKGROUND AND RELATED WORK

2.5 CINEMA DATABASES
The previous sections introduced common topology-based feature characterizations, such
as contours and superlevel sets. At smaller scales, it is possible to compute, analyze,
render, track, and store these features on demand without a significant memory footprint.
For large-scale datasets and in situ environments, however, this is no longer the case, as it
is often impractical to store entire simulation states due to bandwidth and I/O constraints.
Thus, the increasing size, number, and complexity of datasets make it necessary to store
a minimal amount of information that still supports effective and flexible post hoc data
analysis and visualization.

To address this task, Ahrens et al. [2] proposed an image-based approach to store and
visualize simulation output at scale via so-called Cinema databases. These databases
contain color and depth images of simulation objects that were generated in situ based on a
predefined set of camera angles, simulation parameters, and visualization operations, e.g.,
positions of clipping planes, timesteps, color maps, and isovalues of contours (Fig. 2.23).
Each image in the database is uniquely identified by its corresponding parameter values.
These databases are several orders of magnitude smaller than the simulation data they
are derived from, and they enable the real-time exploration of large-scale simulations by
querying and compositing images from the database (Fig. 2.24). For instance, rudimentary
database viewers emulate 3D interaction with the depicted objects by snapping to the
closest available camera position for a requested viewpoint [3, 63, 82, 83, 115]. The
databases can also be browsed by performing queries [3], or by selecting images via
parallel coordinate plots [115] or tracking graphs [63].

Figure 2.23: Image-sampling of a simu-
lation object (icosahedron) using cameras
(red arrows) that are located on vertices of
a low-resolution spherical gird (red edges)
and that aim towards the object center. A
common Cinema database will then consist
of one set of color images for each scalar
field defined on the object, and one set of
depth images.

2.5 CINEMA DATABASES 69

φ

l

1

0.0

2

45.0

3

90.0

Figure 2.24: Cinema database (top) consisting of images of contours (gray surfaces)
with different isovalues l (y-axis), and camera angles φ (x-axis). It is possible to derive
new images (bottom) by compositing depth images from the database. Here, color was
used to differentiate between contours at different levels.

70 CHAPTER 2 — BACKGROUND AND RELATED WORK

Also due to contributions in the context of this manuscript [60, 63, 64], the original
Cinema database specification has evolved to a more generic specification [90] that
supports now any kind of data product, e.g., images, derived meshes, tabular data,
persistence diagrams, merge trees, tracking graphs, and so forth. According to the current
specification, a Cinema database is a file system folder with the extension “.cdb” that
contains all data products. The associated parameters and the relative file path of each data
product is stored in a comma separated value (CSV) file named “data.csv” (Fig. 2.25).

Although the Cinema specification does not prescribe how data products have to be
stored, it is recommended to store them in a Visualization ToolKit (VTK) format [94],
such as VTKUnstructuredGrid or VTKImageData. These formats represent the topology
of a dataset by a set of points (i.e., vertices) and a set of cells (i.e, vertex groups), where
the type prescribes cell configurations. Scalars that are associated with the points or
cells are stored as so-called point or cell data, respectively. Additionally, data that is
associated with the dataset as a whole—e.g., a timestep, or bins of a histogram—are
stored as so-called field data. VTK formats are abstract enough to support almost any
kind of data product, but also precise enough to standardize products across platforms
and algorithms. For example, persistence diagrams, tracking graphs, and contours are
essentially VTKUnstructuredGrids with additional point, cell, and field data that represent
their semantic properties.

A significant limitation of Cinema databases is the fact that they are limited to the set of
data products that were stored at simulation runtime. Thus, images from view angles that
have not been sampled must be extrapolated from the database. For example, non-stored
view angles can be approximated based on existing imagery (Sec. 2.6). Furthermore, it is
possible to identify and store a limited set of view angles that will produce high quality
view approximations (Ch. 4).

.../Meshes.cdb/
data.csv
data/

A_00.vtu
A_01.vtu
B_50.vtu
B_51.vtu
B_54.vtu

Sim, Time, FILE
A, 00, data/A_00.vtu
A, 01, data/A_01.vtu
B, 50, data/B_50.vtu
B, 51, data/B_51.vtu
B, 54, data/B_54.vtu

Figure 2.25: Representation of a Cinema database consisting of the “Meshes.cdb” file
system folder (left) containing all related data products and a “data.csv” file (right) that
records the relative path of the products and their respective simulation parameter values.

2.6 VIEW APPROXIMATION TECHNIQUES 71

2.6 VIEW APPROXIMATION TECHNIQUES
This section introduces the principles behind view-approximation techniques that are the
basis of the proposed image databases generation approach described in Ch. 4. In general,
view-approximation techniques utilize existing imagery—mostly depth images—and
their corresponding camera calibrations to derive synthetic images at novel view angles
that minimize the visual error to the ground truth. This resulted in various Image-Based
Rendering (IBR) approaches, which are summarized in the following.

IBR methods and their integrated geometry approximation algorithms have been
extensively studied in the context of remote rendering [8, 19, 51], image-based mesh-
ing [21, 37, 77, 81, 116, 117], 3D video processing [75, 102], and many more. In remote
rendering, they significantly reduce server and bandwidth load by enabling clients to
extrapolate new views based on already transmitted images without additional requests
to the server [19]. As soon as the client camera diverges too much, the server generates
and sends new images to the client. This is especially useful if the visualizations require
computational or data intensive procedures. In 3D video processing, they allow to post
hoc create stereoscopic images based on video-plus-depth footage [102]. They are also
used to mesh objects based on multiple photographs, which enables photorealistic texture
mapping [88, 107], the digital archiving of cultural heritage [117], and the complete
reconstruction of indoor as well as outdoor environments [77, 116]. Shum and Kang [95]
point out that all these methods require either implicit [15, 16, 37, 57, 113, 117], ex-
plicit [19, 77, 80, 81], or no [54, 71] geometry information to create novel views based
on feature registration, geometry approximation, or plenoptic functions, respectively.

2.6.1 Implicit Geometry and No-Geometry based Techniques
Implicit geometry approximation algorithms interpolate between images by detecting
and tracking features—such as the optical flow [15, 57, 113] or SIFT [37]—which
creates visually appealing transitions between different views. However, the interpolated
images do not necessarily have to coincide with reality, and often exhibit ghosting and
warping artifacts [101]. IBR algorithms that use no geometry information interpret
large dense sets of images as two-dimensional slices of the four-dimensional light field
function [54, 71]. All images are used to approximate the light field which is subsequently
sampled to generate novel views. This produces high quality results as long as the light
field approximation is good enough, but this requires a huge amount of images (1k+) and
even compressed representations do not scale for non-static scenes [54].

72 CHAPTER 2 — BACKGROUND AND RELATED WORK

2.6.2 Depth Image Based Rendering Techniques
On the other side of the IBR spectrum are algorithms that explicitly derive the implied
geometry of depicted objects based on depth images. These images can be obtained from
sensors [77, 116], estimators [39, 55, 56, 58], or directly from the rendering pipeline [2].
As it is straight-forward to generate Cinema databases that contain precise depth images
of 3D rendered objects—such as isosurfaces, streamlines, and particles—the method-
ology presented in this manuscript focuses on Depth Image Based Rendering (DIBR)
techniques. This does not mean, however, that the other approaches are unsuitable for
image extrapolation from Cinema databases, which can be examined in future work.

The rest of this section provides an overview across the development of DIBR tech-
niques, which is also the basis of the approach described in Ch. 4. These methods are
based on the fact that each pixel of a depth image corresponds to a 3D point on the
depicted surface (Fig. 2.26a and b). These points can be computed by inverting the
projection that was used to generate the depth image [19, 77, 80, 81], which yields a
set of independent points in 3D space. A simple way to render the resulting locations
is to represent them as a point cloud, called splatting [78, 81, 98, 121] (Fig. 2.26b).
However, this creates gaps between points; especially when the depth image has a low
resolution. The gaps can be filled by increasing the point size (which leads to a strong
divergence from the original surface), or by increasing the point number (which requires
high-resolution depth images).

Another way to solve this problem is to bridge these gaps with linear surface approx-
imations. To this end, it is necessary to link neighboring points of the depth image by
creating a surface patch between them, i.e., to derive a triangulation based on the depth
image. As a first step, one can create two triangles between four neighboring pixels to
create a piecewise linear approximation of the surface between the points (Fig. 2.26c).
This fills all gaps, but also creates surface patches between pixels with very different depth
values. This is known in the DIBR literature as the depth discontinuity [75, 102, 120]. A
trivial solution to this problem is to use a distance threshold to discard distorted triangles
(Fig. 2.26d). Unfortunately, there exists no threshold value that will always produce
the best results as this value strongly depends on the smoothness of the depicted object.
Moreover, removing such triangles creates gaps again that must be either filled by a
variant of splatting [75], or by incorporating the implied geometry from multiple depth
images [16, 19, 77] (Fig. 2.27). The described DIBR algorithm is implemented in the
DepthImageBasedGeometryApproximation module [62] of the Topology ToolKit [104].

2.6.2 DEPTH IMAGE BASED RENDERING TECHNIQUES 73

(a) (b)

(c) (d)

Figure 2.26: Illustration of the forward mapping of a single 40x40 depth image (a)
for the viscous finger dataset. The resulting points can either be directly visualized by
splatting (b), or by approximating the surface between the points (c-d). Splatting (b)
creates gaps that need to be filled either by increasing the point number (i.e., the image
resolution) or the point size. The surface approximation (c) creates a continuous set of
piecewise linear patches between vertices, but a distance threshold is needed to discard
distorted triangles (d).

74 CHAPTER 2 — BACKGROUND AND RELATED WORK

Figure 2.27: Composited surface approximations of the viscous finger dataset using four
depth images with a resolution of either 402 pixels (top) or 10242 pixels (bottom). Colors
encode the depth image that generated the corresponding surface patch. Depth images
that depict the same part of a surface generate similar patches which causes z-fighting.
This is advantageous in this case as the different depth images agree on the shape of the
corresponding surface patch.

75

CHAPTER 3

NESTED TRACKING GRAPHS

Common tracking graphs are a well established tool in topological analysis to visualize
the evolution of features and their properties over time, i.e., when superlevel and sublevel
set components appear, disappear, merge, and split (Sec. 2.4). However, tracking graphs
are limited to a single level threshold and the graphs may vary substantially even under
small changes to the threshold (Sec. 3.1). This chapter presents a novel topological
abstraction, called the nested tracking graph (NTG) [66], that records the evolution of
features that exhibit a nesting hierarchy; such as the nesting hierarchy of superlevel set
components for different levels (Sec. 3.2). A NTG sets multiple tracking graphs in context
to each other by simultaneously illustrating feature evolution at all hierarchy levels in
one compact visualization. The effectiveness of this approach is demonstrated on various
time-varying datasets from computational fluid dynamics and cosmology simulations
(Sec. 3.3). Based on these results, it was shown that NTGs effectively summarize feature
evolution and enable interactive exploration (Sec. 3.4).

76 CHAPTER 3 — NESTED TRACKING GRAPHS

3.1 MOTIVATION
In various applications, features can be characterized as superlevel or sublevel set com-
ponents of scalar fields, i.e., connected subsets of the domain whose corresponding
scalars are respectively above or below a certain level threshold (Sec. 2.3). The temporal
evolution of these features can the be determined through tracking approaches, such as
techniques based on spatial overlap or merge tree segmentations (Sec. 2.4). The features
and their evolution are then recorded by a topological abstraction called a tracking graph
T (Def. 49). Each vertex of T represents an individual feature—e.g., a single superlevel
set component for a specified level at a certain timestep—and edges between vertices rep-
resent a relationship between them—e.g., if one component is a descendant of component
from an earlier timestep. A common way to visualize these tracking graphs is a planar
embedding, where one axis is used to represent time, and the other to optimize the graph
layout (Fig. 2.16 right). Thus, tracking graphs provide a comprehensible visualization of
the evolution of features, i.e., when they appear, disappear, merge, and split. However,
tracking graphs have in general the following limitations:

• tracking graphs can only represent one level, which is not always known a priori;

• to examine multiple levels one has to compare multiple tracking graphs; and

• tracking graphs may vary substantially even under small changes to the levels.

These limitations are illustrated in Fig. 2.16. Specifically, each tracking graph records
a different story based on the chosen level, and all of these stories are relevant to un-
derstand the temporal evolution of the underlying scalar field. Therefore, the approach
described in this chapter aims to derive a compact visual representation of all these
tracking graphs via a so-called nested tracking graph (NTG). NTGs utilize the fact that
superlevel and sublevel sets for different levels are nested inside each other, which yields a
hierarchy. The top of Fig. 3.1 illustrates the three tracking graphs of Fig. 2.16 via different
shades of blue, and the nesting hierarchy of the superlevel sets for each timestep via edges
between their corresponding vertices in different shades of red. Based on the nesting
hierarchy, it is possible to draw edges of the different tracking graphs inside each other,
which summarizes their story in one graph (Fig. 3.1 middle). This visualization enables
users to effectively follow the evolution of features for different levels simultaneously,
while also setting edges of different levels in context to each other. For huge amounts
of features, NTGs become extremely complex. To counteract this problem, Sec. 3.3
describes how to integrate NTGs as dynamic and interactive control devices in visual
analytic frameworks. Linked to a 3D rendering of the original data, NTGs can be used to
navigate through time and toggle the visibility of features, which enables users to perform
temporal and spatial data peeling.

3.1 MOTIVATION 77

A

B

C

D

E

F

G

H

I

J

K

C

B

A

ti

G

F
D E

ti+1

K

J
I
H

ti+2

Figure 3.1: (Bottom) Superlevel set components of the time-varying scalar-field of
Fig. 2.16 for three different levels (dark to light blue). (Top) 3D illustration of a nested
tracking graph where the tracking graphs for each level are shown in shades of blue, and
the nesting trees for each timestep in shades of red. (Middle) Nested tracking graph where
edges of the tracking graphs are drawn inside each other according to the nesting trees.

78 CHAPTER 3 — NESTED TRACKING GRAPHS

3.2 APPROACH
This section introduces a formal definition of nested tracking graphs (Sec. 3.2.1), provides
a rudimentary NTG computation algorithm based on spatial overlap tracking (Sec. 3.2.2),
and describes a visualization algorithm for NTGs (Sec. 3.2.3).

3.2.1 Formalization
Def. 50 provides a formal description of a nested tracking graph N = V ∪E , which is
basically a one-dimensional simplicial complex whose vertices V have a sequence index
τ and hierarchy index η , and whose edges E have to fulfill some criteria based on these
indicies (Eq. 3.1–3.4). Specifically, the edge set E is the union of two disjoint edge sets
ET and EN that are called the tracking graph edges and nesting tree edges, respectively.
Each vertex v ∈ V that is not at the lowest hierarchy level must have a parent vertex
η̂(v) with the same sequence index at hierarchy level η(v)−1 (Eq. 3.1), and the edge
set EN consists of all these child-parent relationships (Eq. 3.2). Note, each complete set
of edges inside EN that only connect vertices with the same sequence index constitutes
a so-called nesting tree or a forest of these trees (red edges of Fig. 3.1). Next, Eq. 3.3
ensures that tracking graph edges only connect vertices with adjacent sequence indicies
at the same hierarchy level, and all edges of ET between vertices at the same hierarchy
level constitute a complete tracking graph. Finally, Eq. 3.4 requires that if two children
are connected by an edge in ET , then their parents must also be connected by an edge in
ET . Thus, the last criterion ensures that all tracking graph edges are nested across the
hierarchy levels, and it is therefore referred to as the nesting property. Note, not every
tracking algorithm naturally satisfies the nesting property. The sections that describe the
two tracking algorithms of the proposed methodology (Sec. 3.2.2 and Sec. 5.3.1) also
provide a proof that the computed graphs are indeed NTGs. Similar to common tracking
graphs, the vertices of NTGs can be uniquely identified through a feature label map λ ,
and the edges can be decomposed into a set of branches B (Def. 43).

The described NTG definition is abstract enough to represent any kind of sequence
and hierarchy relationship between vertices. In this manuscript, NTGs are primarily used
to record the temporal evolution of superlevel sets and their nesting hierarchy across
different levels. Yet, as demonstrated in Sec. 3.3.4, they can also be used to record the
evolution of clique communities inside weighted graphs, where the nesting hierarchy is
determined trough the dimension of the cliques, and the sequence results form a filtration
of the graph based on the edge weights.

3.2.1 FORMALIZATION 79

Definition 50 (Nested Tracking Graph) Let V be a set of vertices, and let the sequence
map τ : V →N and the hierarchy map η : V →N assign to each vertex a natural number
(e.g., a time or level index). Thus, let V̂ = {v ∈ V | η(v)> 0} be the set of vertices that
are not at the lowest hierarchy level, and let the parent map η̂ : V̂ → V assign to each of
these vertices a parent s.t.

∀ v ∈ V̂ [τ(η̂(v)) = τ(v) ∧ η(η̂(v)) = η(v)−1]. (3.1)

A nested tracking graph N is a one-dimensional simplicial complex consisting of the
vertices V , and any edge set E = ET ∪EN s.t.

EN = { ⟨η(v),v⟩ | v ∈ V̂ }; (3.2)

∀ ⟨u,v⟩ ∈ ET [τ(u) = τ(v)−1 ∧ η(u) = η(v)]; and (3.3)

∀ ⟨u,v⟩ ∈ ET [u,v ∈ V̂ ⇒ ⟨η̂(u), η̂(v)⟩ ∈ ET]. (3.4)

N is also associated with the injective feature label map λ : V → N that assigns to each
vertex of N a unique integer label, and N can be decomposed into branches B.

80 CHAPTER 3 — NESTED TRACKING GRAPHS

3.2.2 NTG Computation Via Spatial Overlap
This section presents the rudimentary NTG computation algorithm that is described in
Lukasczyk et al. [66], and provides a proof that the computed graph is indeed a nested
tracking graph. The algorithm explicitly determines the overlap of superlevel or sublevel
sets between adjacent timesteps at the same level (to determine the tracking graphs), and
between adjacent levels at the same timestep (to determine the nesting trees).

Alg. 5 provides the pseudocode of the procedure NestedTrackingViaOverlap(F,M,
L, m) that processes for an enumeration of levels L and a mode m an enumeration of PL
scalar fields F that are defined on the same PL manifoldM. Depending on whether the
mode m is set to 1 or −1, the algorithm tracks sublevel or superlevel set components,
respectively. The levels in L must also be sorted in descending or ascending order,
accordingly. This procedure derives a set of vertics V , tracking graph edges ET , and
nesting tree edges EN , which are all initialized as empty sets. To this end, the procedure
utilizes the two subprocedures ComputeCS (Alg. 1) and ComputeOverlap (Alg. 3) to
respectively derive component segmentations, and the overlap between segmentations
of adjacent timesteps and levels. In a nutshell, the subprocedure ComputeCS(f ,M, l,
m, n, V) derives either a sublevel or superlevel set component segmentation for a level
l ∈ L based on the mode m, assigns to each component a unique integer label starting at
n, and inserts for every component a representing vertex into the set V . The subprocedure
ComputeOverlap(S0, S1, V, E) processes two such segmentations and inserts into the set
E an edge ⟨u,v⟩ between the representatives u,v ∈V of overlapping components. This
function is used to derive the tracking graph edges by computing the overlap between
segmentations of adjacent timesteps at the same level (line 21), and the nesting tree
edges by computing the overlap between segmentations of adjacent levels at the same
time index (line 11 and 18). Specifically, the algorithm iterates over the scalar fields
and stores the segmentations of the previous and current iteration in the enumerations P
and C, respectively. To properly iterate over the scalar fields, it is necessary to initially
compute the segmentations and the corresponding nesting tree of the first timestep (line
7-11) outside the main loop (line 12-23). The last step of each iteration replaces the
enumeration P with C. Finally, the algorithm returns the sets V , ET , and EN . Note, all
edges of ET between vertices with the same level yield a complete tracking graph, and all
edges of EN between vertices with the same time index yield a nesting tree or a forest of
nesting trees. However, this rudimentary algorithm needs to recompute the components
and their overlap each time the levels are updated. A more efficient algorithm is presented
later in Sec. 5.3.1.

3.2.2 NTG COMPUTATION VIA SPATIAL OVERLAP 81

Algorithm 5: NestedTrackingViaOverlap(TVPLSF F̂ , PLMM, Levels L, Mode m)
1 V ← /0 // Tracking Graph Vertices
2 ET ← /0 // Tracking Graph Edges
3 EN ← /0 // Nesting Tree Edges
4 n ← 0 // Component Label Counter
5 P ← [] // Previous Segmentations
6 C ← [] // Current Segmentations

7 // Compute Segmentations and Nesting Tree Edges of F0
8 for j ← 0 to Size(L) do
9 Pj ← ComputeCS(F0,M, L j, m, n, V)

10 if j > 0 then
11 ComputeOverlap(Pj−1, Pj, V, EN)

12 // Iterate over Sequence
13 for i ← 1 to Size(F̂) do

14 // Compute Segmentations and Nesting Tree Edges of F̂i
15 for j ← 0 to Size(L) do
16 C j ← ComputeCS(F̂i,M, L j, m, n, V)
17 if j > 0 then
18 ComputeOverlap(C j−1, C j, V, EN)

19 // Compute Tracking Graph Edges between F̂i−1 and F̂i
20 for j ← 0 to Size(L) do
21 ComputeOverlap(Pj, C j, V, ET)

22 // Replace Previous with Current Segmentations
23 P ← C

24 return (V, ET , EN)

To proof that the computed graph of Alg. 5 is indeed a nested tracking graph, it is
necessary to show that the constraints in Eq. 3.1–3.4 of Def. 50 are satisfied. Therefore,
let V , ET , and EN correspond to V , ET , and EN , respectively. From Alg. 5 follows directly
that each component of every timestep and sampled level is represented by a unique vertex
in V , and that V only consists of these representatives. To simplify notations, let v j

i ∈V
denote the vertex that uniquely represents a connected component at time index i and
level index j. Then, let the maps τ and η return for each vertex v j

i ∈V respectively the
time and level index, and let the parent map η̂ return for every vertex v j

i ∈V with j > 0
the unique vertex v j−1

i ∈ V whose corresponding component completely contains the
component of v j

i . That there exists exactly one such component is proven in Theorem 1.

82 CHAPTER 3 — NESTED TRACKING GRAPHS

Theorem 1 (Superlevel and Sublevel Set Components have a Nesting Relationship) For
a PL scalar field f and two levels a,b ∈ R with a≤ b, each superlevel set component of
L+f (b) is the subset of exactly one superlevel set component of L+f (a), and each sublevel
set component of L−f (a) is a subset of exactly one sublevel set component of L−f (b).

Proof: Let the sets A and B denote the superlevel sets L+f (a) and L+f (b), respectively.
Since for each component Ḃ of B we know that ∀x ∈ Ḃ : a≤ b≤ f (x) it follows that

Ḃ⊆ A. (3.5)

Let Ā denote an enumeration of all connected components of A, i.e., A =
⋃

Ā. Hence,
Eq. 3.5 implies that Ḃ is at least a subset of one component of Ā. Lets assume that Ḃ is the
subset of more than one component of Ā, and let Ȧ0, Ȧ1 ∈ Ā be any two distinct components
that have a non-empty intersection with Ḃ. Now consider the points x ∈ {A0∩ Ḃ} and
y ∈ {A1∩ Ḃ}. Since x and y are elements of the same connected component Ḃ there must
exist a path P⊆ Ḃ from x to y. However, from Eq. 3.5 follows that

P⊆ Ḃ⊆ A (3.6)

which means that Ȧ0 and Ȧ1 are connected by a path in A. This contradicts the fact that
Ȧ0 and Ȧ1 are distinct connected components of A. Hence, Ḃ is a subset of exactly one
component of A. The proof for sublevel set components is symmetrical.

Using the aforementioned definitions of V , ET , EN , τ , η , and η̂ , and the fact that
Alg. 5 only adds to EN edges between vertices that have the same time index and that are
at adjacent levels (lines 11 and 18), it follows that Eq. 3.1 and 3.2 of Def. 50 hold. Eq. 3.3
holds as line 21 of Alg. 5 only adds edges to ET at the same hierarchy level for adjacent
timesteps. The nesting property (Eq. 3.4) follows form Eq. 3.5, i.e., if the components
of two vertices v j

i and v j
i+1 of V with j > 0 overlap, than also do the components of the

parent vertices η̂(v j
i) and η̂(v j

i+1) of V that contain these components. Thus, the edges
⟨v j

i ,v
j
i+1⟩ and ⟨η̂(v j

i), η̂(v j
i+1)⟩ are elements of ET . This completes the proof that the

graph computed by Alg. 5 is a valid nested tracking graph.

3.2.3 VISUALIZATION 83

3.2.3 Visualization
This section describes a visualization algorithm for nested tracking graphs (NTGs), and
how NTGs can be integrated in visual analytic interfaces for interactive exploration.

A Layout Algorithm for Nested Tracking Graphs

A straight forward way to visualize an NTG is to first compute individually for each
level an optimized layout of the corresponding tracking graph, then draw the lowest level,
and finally nest the remaining graphs inside each other from the lowest to the highest
level. To this end, the procedure ComputeNestedTrackingGraphLayout(N) of Alg. 6
derives for a NTG N = (V,ET ,EN) a map p : V → R2 that assigns to each vertex v a
position in R2, where one coordinate represents time, and the other is used to minimize
the number of edge crossings. To nest edges, it is necessary to also assign a width w(v)
to each vertex v ∈ V such that w(v)≥ ∑u∈η̂−1(v)w(u), i.e., each parent is larger than all
its children. For example, the width can encode the total number of children of a parent,
or the size of the associated superlevel set component. First, the algorithm computes
individually for each level of N an optimized layout of the corresponding tracking graph
Ti = { ⟨u,v⟩ ∈ ET | η(u) = η(v) = i } ∪ { v ∈ V | η(v) = i } with the subprocedure
ComputeTrackingGraphLayout. For example, this subprocedure could represent Ti in the
graph description language DOT, and subsequently compute an optimized layout with a
graph library such as Graphviz [32]. Next, the algorithm iterates over all levels above zero
in ascending order, and updates the positions of the vertices at level l (children) based on
the vertices at the previous level l−1 (parents) via the subprocedure GetRelativePosition.

Algorithm 6: ComputeNestedTrackingGraphLayout(NTG N)
1 p ← [] // Vertex Positions

2 // Compute Tracking Graph Layouts
3 for i ← 0 to NumberOfLevels(N) do
4 Ti← GetTrackingGraph(N , i)
5 ComputeTrackingGraphLayout(Ti, p)

6 // Update Vertex Positions of Nested Levels
7 for i ← 1 to NumberOfLevels(N) do
8 Ti← GetTrackingGraph(N , i)
9 foreach vertex v ∈ Ti do

10 p[v] ← GetRelativePosition(N , p, v)

11 return p

84 CHAPTER 3 — NESTED TRACKING GRAPHS

A child vertex v is connected via exactly one edge of EN to its parent u = η̂(v) due to
Eq. 3.1 and 3.2 of Def. 50. The new location of v depends on the number and width of all
other children of its parent η̂−1(u) (Figure 3.2). As the total width of all children does
not exceed the width of the parent, children can be drawn below each other inside the
available space of the parent, where the order depends on the optimized layout calculated
for the tracking graph T j. The remaining space of the parent can then be used to create
gaps. After the iteration, each vertex v ∈ V has a new layout coordinate p(v). To actually
render a NTG using the computed layout, every tracking graph edge ⟨u,v⟩ ∈ ET can
be drawn as a Bézier curve from p(u) to p(v), where the width is linearly interpolated
between w(u) and w(v), and edges are sorted in z-direction based on the level. Although
the color scheme used to encode the different levels can be domain specific, in general it
appears sensible to use a sequential color map.

A

B

C

D
E

F

G

H

I

J
K

Level 0

C G

J

K

B F

I

Level 1

B F

I

A
E

D

H

Level 2

A
E

D

H

Figure 3.2: Illustration of the
NTG layout algorithm. First, the
algorithm computes an optimal lay-
out for each individual tracking
graph of a nested graph (blue edges
of top figure), where each vertex
has also an associated width. Then,
the algorithm positions the vertices
of the lowest layer according to
this layout, and then iterates over
the remaining levels in ascending
order, where children (red nodes
with label on the right) are posi-
tioned according to their parents
(black nodes with label on the left)
and the available space of the par-
ent (black bars). After all vertex
positions of one level have been
determined, edges of that level can
be drawn via Bézier curves that lin-
early interpolate the width of ver-
tices (dashed lines). Each level is
drawn in a different color to high-
light the nesting hierarchy.

3.2.3 VISUALIZATION 85

Integration of NTGs in Visual Analytic Interfaces

Nested tracking graphs can be integrated in visual analytic frameworks as interactive
devices that illustrate the evolution of features, and enable analysts to browse through time
and levels. Figure Fig. 3.3 shows a simple web-based tool that consists of a direct volume
rendering (DVR) window (top), and a nested tracking graph (bottom). In this example, the
NTG represents the evolution of superlevel set components for three different levels. Per
default, each level of the nested graph is shown in a different color to provide an overview
across the different levels. Clicking on an edge of the NTG highlights the corresponding
level while other levels are grayed out, which also updates the shown components in
the DVR window. The resulting highlighted graph is a common tracking graph that is
colored based on a branch decomposition. Although other levels are grayed out, they still
provide context as they indicate the nesting hierarchy with respect to the selected level.
For instance, the nested graph in Figure Fig. 3.3 shows that 1) the huge orange component
contains multiple components of higher value, 2) all components of the selected level are
contained in one single component of lower level, and 3) sometimes small components
split from this low level component. Components in the DVR and NTG window are
shown in the same color to link both views, and it is possible to highlight individual
features in both views by clicking on components in the DVR window, or by selecting
vertices, edges, or entire branches of the NTG.

50

50

51

51

52

52

53

53

54

54

55

55

56

56

57

57

58

58

59

59

60

60

61

61

62

62

63

63

64

64

65

65

66

66

67

67

68

68

69

69

70

70

71

71

72

72

73

73

74

74

75

75

76

76

77

77

78

78

Figure 3.3: Interface of a simple web-based visual analytics framework consisting of a
DVR window (top) and the interactive nested tracking graph (bottom).

86 CHAPTER 3 — NESTED TRACKING GRAPHS

3.3 RESULTS
This section demonstrates how nested tracking graphs can be used for ensemble compari-
son, semantic decomposition, and interactive exploration.

3.3.1 Viscous Fingering
The first case study examines the ensemble of finite pointset method (FPM) simulations of
the scientific visualization contest 2016 [42] that was already introduced in Sec. 2.4.2. To
summarize, the simulations model the mixing process of salt solutions inside a water filled
cylinder with an infinite salt supply at its top, where simulations incorporate stochastic
effects to model the aleatoric uncertainty of the mixing process. While the solutions sink
down to the bottom of the cylinder, they form characteristic structures with increased
salt concentration value, called viscous fingers (Fig. 3.3 left). Utilizing the approach
presented in Lukasczyk et al. [63], it is possible to sample the salt concentration density
on a uniform grid with 643 vertices, and subsequently compute superlevel set components
that exceed a fixed salt concentration threshold. Removing the salt supply form these
components—e.g., by clipping the domain—produces a new set of connected components
that correspond to the individual viscous fingers (Fig. 3.3 left).

The original approach presented in Lukasczyk et al. [63] computes a tracking graph for
multiple density levels (Fig. 2.21). Although each tracking graph effectively summarizes
the finger evolution at a fixed level, they are limited to said level, and there is no direct
visual link between them. Conversely, NTGs set these tracking graphs in context to each
other, i.e., they illustrate how fingers of different concentration levels are nested inside
each other, and they provide a compact visual representation of each run. In previous
approaches, users had to compare multiple separate tracking graphs per ensemble member.
Thus, computing for each run an NTG for the same set of levels enables the effective
visual comparison between ensemble members. Fig. 3.4 shows the NTGs for three
ensemble members (left to right) for the density levels 25, 30, and 35 (dark to light red),
where the width of edges encodes the size of their associated components. Obviously,
the stochastic effects of the simulation have an impact on the finger structures, yet, some
trends become apparent. For instance, until around timestep 30, small fingers emerge
from the salt supply that subsequently merge into one huge component shown in dark red.
In all runs there exists only one of these huge growing components that sometimes splits
into—or merges with—much smaller components. Furthermore, the NTGs clearly show
that the number of fingers and their nesting hierarchy are very similar across the runs.

3.3.1 VISCOUS FINGERING 87

24 24 24 24

26 26 26 26

28 28 28 28

30 30 30 30

32 32 32 32

34 34 34 34

36 36 36 36

38 38 38 38

40 40 40 40

42 42 42 42

44 44 44 44

46 46 46 46

48 48 48 48

50 50 50 50

52 52 52 52

54 54 54 54

56 56 56 56

58 58 58 58

60 60 60 60

62 62 62 62

64 64 64 64

Figure 3.4: NTGs of three ensemble members of the viscous finger dataset (left to right)
for the density levels 25, 30, and 35 (dark to light red). Edges represent the evolution of
finger volumes, where the y-axis represents time, and the x-axis is used to minimize the
number of edge crossings. Although stochastic effects alter simulation results, the graphs
show similar trends such as the initial phase where small fingers originate from the salt
supply and then merge into larger finger structures.

88 CHAPTER 3 — NESTED TRACKING GRAPHS

3.3.2 Jet Simulation
This dataset results from a direct, numerical, computational fluid dynamics (CFD) simu-
lation capturing the injection of a jet into a medium at rest, which causes the formation of
vortical structures due to friction. At the beginning of the simulation it can be observed
that a large vortex is formed at the tip of the jet, and that this vortex progressive decays
into smaller vortical structures as the system moves towards turbulence. Specifically, the
simulation computes velocity data on a uniform grid of resolution 128×256×128 with a
total of 600 timesteps, where the derived vorticity magnitude describes the local strength
of rotation. Thus, vortices of the vector field correspond to superlevel set components
above a vorticity magnitude threshold.

This case study demonstrates that NTGs can be used to create semantic partitions
of datasets, helping users to effectively peal through the data. For example, consider
the components for the two vorticity magnitude levels 85 and 117 shown at the top
of Fig. 3.5. A standard tracking graph that illustrates the evolution of the individual
components at level 117 primarily consists of numerous separate lines, which is therefore
heavily cluttered and does not provide context. However, the components of level 117
are contained in components of lower levels, which yields a group hierarchy that can
be illustrated via a nested graph. The bottom of Fig. 3.5 shows the NTG for these two
values, where the layer for level 85 is highlighted and the layer for level 117 is grayed
out. The colors of the graph match the ones used to show the individual components for
level 85 of top left DVR window. At timestep 302 there exist two major components,
i.e., the main jet (red) and the top ring (orange). These components contain the smaller
components with higher vorticity magnitude and thus provide context by partitioning
them into groups. The graph shows that the ring—and thus its subcomponents—split
from the main jet at timestep 295; an information that is not conveyed by conventional
tracking graphs. Furthermore, if users want to examine the components within the ring,
they can click on its corresponding edge to highlight the history of its subcomponents
and filter out others. Thus, the nested tracking graph can be used to organize multiple
tracking graphs and their respective components.

3.3.2 JET SIMULATION 89

289

289

290

290

291

291

292

292

293

293

294

294

295

295

296

296

297

297

298

298

299

299

300

300

301

301

302

302

Figure 3.5: (Top) Individual components of the jet dataset at timestep 302 for vorticity
magnitude level 85 (left) and 117 (right). (Bottom) NTG with focus on layer 85, i.e.,
layer 117 is grayed out and the edge colors of layer 85 match the components of the left
DVR window. The graph indicates that the top component (orange) splits from the main
component (red) at timestep 295, and contains another huge component.

90 CHAPTER 3 — NESTED TRACKING GRAPHS

3.3.3 Dark Matter Halos
In this case study, NTGs are used to visualize the evolution of dark matter halos in a
large-scale cosmology simulation of the Lyman α forest [67]. The simulation is based on
the Nyx [4] code, covers a cubic domain consisting of 2563 vertices with an edge length
of approximately 93 million light years, and contains 850 timesteps that span the interval
from redshift z = 159 (approximately 10 million years after the Big Bang) to redshift
z = 0 (today, approximately 13.5 billion years later). It uses hydrodynamics to evolve
Baryon density and treats dark matter as collisionless particles evolved via a particle-mesh
method. Next, halos—i.e., gravitationally collapsed regions of locally higher density—are
identified as superlevel sets exceeding a density threshold, and correspond to clumps of
matter hosting galaxies and groups of galaxies.

This dataset is challenging due to the vast number of features and their complex
evolution; especially at the beginning of the simulation where halos start to form and then
progressively cluster together. The evolution of galaxy filaments, halos, and sub-halos
can be illustrated by an NTG with density levels 2.633× 1012, 1× 1012, and 5× 1011,
respectively. The largest level was suggested by domain scientists, and the other levels
are chosen heuristically based on the indicated structures of the cosmic web that are
visible in the volume rendered images of the halo dataset. Specifically, the middle of
Fig. 3.6 illustrates the nesting relationship of sub-halos (red), halos (dark blue), and galaxy
filaments (light blue). This hierarchy can be well represented with nested tracking graphs
(top and bottom). However, it is not possible to interactively render the entire graph due
to the large number of edges. Therefore, the graph can be interactively explored in a
level-of-detail approach by filtering halos below a certain size, collapsing intermediate
timesteps, and focusing on individual feature groups. The top and bottom of Fig. 3.6 show
the NTG for the same galaxy filament during the early and late stages of the simulation,
respectively. The first graph shows an important phase of the simulation in which a
large number of new halos are born within the same filament, that are then attracted to
each other and merge. Note the vast number of small isolated halos (thin red lines) at
timestep 300 that merge into two large clusters (thick red lines) until timestep 350. Later,
the simulation converges to a state where most halos are clustered together. A feature
in the filament that is preserved during the entire simulation run is a single huge halo
(thick dark blue edge) that contains the most and largest sub-halos (red). In contrast to
single tracking graphs, the nested representation shows the evolution of galaxy filaments,
contained halos, and how they cluster together simultaneously.

3.3.3 DARK MATTER HALOS 91

300

300

305

305

310

310

315

315

320

320

325

325

330

330

335

335

340

340

345

345

350

350

800

800

805

805

810

810

815

815

820

820

825

825

830

830

835

835

840

840

845

845

850

850

Figure 3.6: NTGs for one galaxy filament of the halo dataset during an early (top)
and a late (bottom) stage of the simulation that illustrate the evolution of superlevel set
components for density levels 2.633×1012, 1×1012, and 5×1011, which correspond to
galaxy filaments (light blue), halos (dark blue), and sub-halos (red). The middle shows a
DVR image of timestep 850, where the transfer function matches the colors of the NTG.

92 CHAPTER 3 — NESTED TRACKING GRAPHS

3.3.4 Clique Communities
This last case study demonstrates that NTGs can also be used to illustrate the evolution
of other features that exhibit a nesting hierarchy. Recently, Rieck et al. [89] proposed a
novel method to analyze complex networks based on the persistence of so called clique
communities, which correspond to nested densely interconnected subgraphs. Formally,
the method processes a network that is represented as a one-dimensional simplicial
complex Kw whose edges are associated with a weight value w. A k-clique is then a
completely interconnected subgraph of K consisting of k vertices; and two k-clicks are
called adjacent iff they share a k−1 face. A k-clique community C ⊆ K is a maximal set
of k-cliques that can be decomposed into a sequence such that every consecutive pair is
adjacent, where k is called the community degree. Thus, 2-clique communities consist
of edge connected components, 3-click communities are triangles that are connected
by edges, and so forth. These groups decompose the entire graph, with the additional
advantage that simplicies can be part of multiple communities. Therefore, the relevance of
simplicies can be measured by the number and degrees of the communities they participate
in. Note, this yields a nesting hierarchy as by definition every k-clique community is
a subset of exactly one k−1-clique community, e.g., a 3-clique community is also an
edge connected component and so forth. Moreover, defining a filtration of Kw based
on thresholding w yields a sequence of growing graphs K̄w. Thus, the evolution of
communities in K̄w for multiple degrees can be described by a nested tracking graph.

Fig. 3.7 illustrates the well-known co-occurrence network between characters in Victor
Hugo’s novel “Les Misérables”. To derive a filtration from significant to insignificant
connections between characters, it is first necessary to invert the edge weights. Thus,
characters that frequently interact with each other are connected by an edge with a small
weight. The network only consists of 77 vertices and 254 edges, but contains numerous
cliques up to k = 10. The edges of the NTG (top) comprehensibly illustrate the evolution
of k-clique communities during the filtration, where the x-axis and colors correspond
to the weight threshold and community degrees, respectively. For small edge weight
values, the network consists of a single small 2-clique community. By increasing the
weight threshold, new 2-clique communities start to appear and merge. At the same
time, colors turn into brighter shades, thereby revealing that the connections between
vertices become stronger. In contrast to a standard connectivity analysis, the use of clique
communities reveals the presence of various communities. In this case, although all
characters participate in the same story, there exists numerous subplots involving different
characters.

3.3.4 CLIQUE COMMUNITIES 93

0

0

12

12

14

14

18

18

19

19

21

21

22

22

24

24

25

25

26

26

27

27

28

28

29

29

30

30

32

32

0

0

12

12

14

14

18

18

19

19

21

21

22

22

24

24

25

25

26

26

27

27

28

28

29

29

30

30

32

32

0

0

0

0

12

12

12

12

14

14

14

14

18

18

18

18

19

19

19

19

21

21

21

21

22

22

22

22

24

24

24

24

25

25

25

25

26

26

26

26

27

27

27

27

28

28

28

28

29

29

29

29

30

30

30

30

32

32

32

32

Figure 3.7: Illustrations of the evolution of clique communities in the “Les Misérables”
co-occurrence network. The images in the center render the network with a force-directed
layout, where the left image colors simplicies based on the largest community degree
they participate in, and the right image uses colors to distinguish between individual
communities for edge weight threshold 29 and degree 4. The NTGs comprehensibly
illustrate when and which clique communities merge while increasing the edge weight
threshold (left to right), as well as how communities for different degrees are nested inside
each other (layers). Note, communities are allowed to share simplicies as individuals
interact with various groups of distinct interconnectivity. Users can explore the dataset by
interacting with the NTG. For example, the bottom NTG highlights individual 4-clique
communities for threshold 29 that are also displayed in the right force-directed layout.

94 CHAPTER 3 — NESTED TRACKING GRAPHS

Integrating the graph visualizations into a visual analytic interface enables users to
explore different edge weights and community degrees. Intuitively, varying the edge
weight threshold helps to extract the “core” of a community, while changing the degree
permits analyzing the same social circle according to different granularity levels by
revealing the sub-communities it consists of. For instance, analyzing the network for
the largest edge weight results in a clear community structure for k = 4 (Fig. 3.7 center
right, and bottom). By leaving k fixed and moving “horizontally” in the nested graph, it is
possible to track the evolution of a selected community. E.g., by moving from threshold
32 to 29, the big dark blue community at threshold 32 actually consists of three different
sub-communities (blue, light orange, and light red). Moreover, the six communities that
exist for threshold 28 turn out to be highly relevant for the structure of this network,
as each of them corresponds to a significant group of characters: the members of the
revolutionary association called Les Amis de l’ABC (dark blue), the circle of friends of
the young Fantine (light blue), the members of the Patron-Minette crime gang (orange),
the social circle of Bishop Myriel (green), the participants at Champmathieu’s trial (red),
and the family of Marius (light red). In conclusion, NTGs comprehensibly illustrate the
evolution of communities for varying edge weight thresholds and degrees simultaneously,
and can be used as interactive steering devices for visual analysis.

3.4 DISCUSSION
This chapter presented nested tracking graphs (NTGs): a novel topological abstraction
that records and visualizes the evolution of features that exhibit a nesting hierarchy, e.g.,
sublevel and superlevel set components for multiple levels. Thus, NTGs set multiple
tracking graphs in context to each other, and provide a compact visualization that enables
users to follow the evolution of features and their properties for different levels simultane-
ously. It was demonstrated that NTGs can be used in various applications as an effective
tool for interactive data exploration and analysis.

The initial NTG visualization algorithm presented in Sec. 3.2.3 computes smooth
and steamlined layouts, but they still contain numerous edge crossings. For example,
the red lines of Figure Fig. 3.6 between timestep 835 and 840 cross even though their
corresponding components do not merge. These “false” crossings—which could be
misinterpreted as merge or split events—can only occur between timesteps and never
at an exact timestep. Hence, edge crossings between timesteps are only layout based
and do not have any semantic interpretation. Some edge crossings are unavoidable, but
many of them result from the individual layout computation of the levels. To reduce the
number of edge crossings it is necessary to consider the graph structures of other levels

3.4 DISCUSSION 95

while computing the final layout. Based on this idea, Köpp et al. [48] recently proposed
an improved NTG layout algorithm that uses a custom optimization procedure based on
simulated annealing [47]. To improve the layout further, in the future edges could be
arranged according to the spatial position of their associated features. To cope with a
large number of timesteps and components it also seems possible to apply edge bundling
techniques that summarize time intervals and branches of the graphs. Edges and nodes of
the graph could also be linked to other visualizations such as persistence diagrams and
histograms to provide additional information about the components.

Another limitation is the maximum number of visible levels, which depends on the
dataset, the amount of cluttering of the resulting graphs, and on whether the graphs are
shown statically or in an interactive interface. Based on the presented experiments, static
drawings of nested graphs should not show more than three levels at once. An interactive
interface can use zooming and focus-and-context techniques to compensate for cluttering,
making it practical to show up to 8 levels in a nested graph. However, using only two
levels is already a significant improvement over previous visualization techniques as the
nested tracking graph shows the tracking graphs for both levels simultaneously and sets
them in context to each other.

The prime application of NTGs is to characterize the evolution of sublevel and
superlevel set components for multiple levels. Obviously, the choice of these levels
has a significant impact on the resulting visualization, and updating the levels requires
recomputing the tracking information across all timesteps and levels. The approach
presented in Ch. 5 improves on these limitations by determining significant levels based
on the merge tree structure of the underlying scalar field, and by utilizing an intermediate
data structure that enables the fast computation of NTGs. As demonstrated in Sec. 3.3.4,
NTGs can be applied in various other fields as well. In general, they are suited to
visualize any time-varying hierarchies; such as the ones present in hierarchical clustering,
hierarchical diffusion, and threshold based methods.

97

CHAPTER 4

VOIDGA:
A VIEW-APPROXIMATION ORIENTED IMAGE

DATABASE GENERATION APPROACH

This chapter presents a novel view-approximation oriented image database generation
approach (VOIDGA) that enables the adequate generation of arbitrary view angles [64].
The approach utilizes Depth Image Based Rendering (DIBR) techniques to derive novel
views based on a set of depth images (Sec. 2.6). In contrast to approaches that store
a huge amount of images to cover a wide range of possible view directions (Sec. 4.1),
VOIDGA identifies and stores a reduced set of images that enables the approximation of
any view angle with an acceptable visual error (Sec. 4.2). This further reduces the size of
image databases and the number of images that need to be processed by DIBR algorithms.
VOIDGA is demonstrated on several challenging real-world examples (Sec. 4.3), and
the resulting view approximation quality is examined qualitatively and quantitatively via
two image-based similarity metrics (Sec. 4.4).

98 CHAPTER 4 — VOIDGA

4.1 MOTIVATION
The increasing size and complexity of datasets make it necessary to reduce the amount of
stored information while still supporting effective data exploration through interactive
visual interfaces. Especially in the case of large-scale simulations, it is often impossible
to store entire simulation states for post hoc analysis due to bandwidth and I/O con-
straints. To address this issue, Ahrens et al. [2] proposed the ParaView Cinema concept
as an image-based approach for the post hoc exploration of simulation output (Sec. 2.5).
In their approach, an image database is created in situ consisting of color and depth
images of simulation elements taken from various camera positions. Such databases
are several orders of magnitude smaller than the simulation data they are derived from,
and they enable the real-time exploration of extreme scale simulations by querying and
compositing images from the database. Rudimentary image database viewers facilitate
basic camera movement by simply snapping to the closest available camera position for a
requested viewpoint [3, 63, 82]. As a principled limitation, these viewers cannot visualize
viewpoints that had not been foreseen and specified during database generation. However,
depth image based rendering (DIBR) algorithms (Sec. 2.6) enable the approximation of
novel views based on existing database elements, which supports unconstrained camera
interaction for visual exploration. In turn, such algorithms introduce approximation errors
that depend on the quality of the used DIBR technique and the input depth images. It is
also not clear which and how many images are needed to adequately approximate a wide
range of novel views.

The proposed approach addresses these issues by taking the first step towards lever-
aging the information stored in an image database to its full potential. Specifically,
this chapter describes a novel view-approximation oriented image database generation
approach (VOIDGA) that determines a minimal set of input depth images that enable
the approximation of new views within a certain error bound. The core concept of
VOIDGA is to identify and store images that significantly contribute to the overall
view-approximation quality, while at the same time discarding images that can already
be adequately approximated. This yields much smaller image databases than the ones
produced by current state-of-the-art implementations which uniformly sample images on
a spherical grid. This also results in a reduced set of images that need to be processed by
DIBR algorithms while still guaranteeing a minimum approximation quality.

4.2 APPROACH 99

4.2 APPROACH
Alg. 7 outlines the novel view approximation-oriented image database generation ap-
proach (VOIDGA) that utilizes depth image based rendering (DIBR) methods (Sec. 2.6)
and image similarity metrics (Sec. 4.2.1) to identify a reduced set of depth images D̂
that enable the adequate geometry approximation of the depicted simplicial complex K.
VOIDGA is essentially a Greedy algorithm that iteratively refines a sampling grid G and
then only stores images that significantly contribute to the overall post hoc approximation
quality. To this end, VOIDGA consists of three phases: the database backbone generation
(Sec. 4.2.2; lines 1-2), the database refinement (Sec. 4.2.3; lines 3-17)), and the database
downsampling (Sec. 4.2.4; line 14). To run VOIDGA completely automatically, it is
necessary to specify the maximum number depth images N, the initial (and thus maxi-
mum) image resolution R, and the error thresholds of the used image similarity metrics
E. In the following, VOIDGA is demonstrated with the DIBR techniques described in
Sec. 2.6—which features splatting (Fig. 2.26, top right) and depth image triangulation
(Fig. 2.26, bottom)—as well as the Multi-Scale Structural Similarity Metric and Average
Depth Difference. However, it would also be possible to use any DIBR method or image
metric due to the modular design of VOIDGA.

Algorithm 7: VOIDGA(Grid G, Simplicial Complex K, Thresholds (N, R, E))

1 // Backbone Generation
2 D̂ ← RenderGroundTruth(K, G, R)

3 // Refinement
4 do
5 // Get Candidates
6 G ← RefineGrid(G)
7 D ← RenderGroundTruth(K, G, R)
8 TuneApproximationRenderer(D̂, D, G, R)

9 while |D|> 0 do

10 D̂′← RenderApproximation(D̂, G, R)
11 (D, Ê)← GetWorstApproximatedGroundTruthImage(D̂′, D)

12 // If error or size threshold reached return downsampled images
13 if Ê < E ∨ |D̂|> N then
14 return ReduceImageResolutions(D̂, EM, EA)

15 // Update depth image sets
16 D ← D \ {D}
17 D̂ ← D̂ ∪ {D}

100 CHAPTER 4 — VOIDGA

4.2.1 Image Similarity Metrics
To assess the significance of individual images during database generation, VOIDGA
compares the current view approximations against ground truth renderings via some image
similarity metrics. Suitable metrics that are used by default are the Multi-Scale Structural
Similarity Metric (MS-SSIM) [111] that estimates the perceived image similarity, and
the Depth Difference (DD) [49] that measures the actual shape distortion.

The DD tries to capture the volumetric difference between two objects by comparing
multiple depth images of the objects in pairs, where the images of each pair are generated
with the same camera calibration, i.e., location, up-vector, direction vector, near-far plane,
and so forth. Similar to Cinema databases, these pairs are generated on vertices of a
grid that encapsulates the datasets and aim towards the object center (Fig. 2.23). The
difference between two depth images is then measured by the so-called Average Depth
Difference (ADD) that is the sum of the actual depth value difference per pixel. Hence,
it is assumed that the depth images have the same size, and that their values are in the
range [0,1]. The DD is then given as the average of all computed ADDs, where a value
of 0 implies that the depicted objects are identical, and larger values are proportional to
shape variations.

The MS-SSIM is modeled after the assumption that the human visual system is highly
adapted for extracting structural information from 3D projections. Thus, a measure of the
structural similarity between images can provide a good estimate of the perceived image
quality [110, 111]. In contrast to the original SSIM [110], the MS-SSIM iteratively
downsamples the input images to determine the luminance and contrast variations for
varying resolutions. This allows to evaluate the structural similarity between images
more independently from the actual image sizes. Similar to the ADD metric, VOIDGA
computes the MS-SSIM for multiple camera positions and builds the average to evaluate
the structural similarity across the entire approximation. However, the ADD computes an
error value from 0 (identical) to 1 (complete opposite), whereas the MS-SSIM computes
a score from 0 (not similar) to 1 (identical).

4.2.2 Database Backbone Generation
The first stage of VOIDGA normalizes the dataset geometry according to the dimensions
of the unit-cube with center at the origin, and then select a sampling grid structure. A com-
mon way to generate Cinema databases is to uniformly sample along a latitude-longitude
parameterized sphere that encapsulates the dataset, where the cameras are positioned at
the grid vertices and aim towards the center (Fig. 2.23). For image database viewers that

4.2.3 DATABASE REFINEMENT 101

simply snap to the next available image, this creates intuitive transitions as it seems like
the camera rotates along the lat-lon axes. However, this grid causes an oversampling at
the poles, and an undersampling at the equator (Fig. 4.1 left). Since DIBR methods are
not restricted to the actual image locations, it makes more sense to use an icosahedron as
a sampling primitive. In contrast to a lat-lon grid, each icosahedron refinement uniformly
creates new sampling positions that equally cover possible view angles (Fig. 4.1 right).
As these positions are eventually ADDed to the database, VOIDGA effectively improves
the approximation quality in each step.

To generate the database backbone (a small set of images that are the basis for the
view approximation), VOIDGA samples images on the 12 vertices of the unrefined
icosahedron (intersection of red lines in Fig. 4.1 right). Then, a depth image with the
initial resolution is generated for each vertex of the grid using an orthographic camera,
where the camera width and height are set to the icosahedron diameter. Thus, each image
encapsulates the complete dataset, and the 12 locations already provide a good view
angle coverage. It is also possible to ADD model-specific view angles—such as interior
locations—to the backbone if such important angles are known a priori. The next phase
uses the resulting images as a basis for the view approximation.

Figure 4.1: Sampling grids for the Cin-
ema database generation: a latitude-
longitude parameterized sphere (left), and
a refined icosahedron (right). The first
subdivision is shown in red, and the sec-
ond subdivision in gray. The icosahedron
vertices are uniformly spread, while the
latitude-longitude grid oversamples poles,
and undersamples the equator.

4.2.3 Database Refinement
In this phase, VOIDGA iteratively refines the sampling grid G (line 6) and only ADDs
images to the database that significantly contribute to the global approximation quality.
Hence, it is necessary to derive two depth images per sampling location: the depth images
D of the ground truth geometry K (line 7), and the depth images D̂′ of the current view
approximation using all available images in the database D̂ (line 10). Instead of storing
all new depth images D immediately in the database, VOIDGA iteratively determines
the worst approximated ground depth image and ADDs it to the database. Note, the
approximated depth images D̂′ depend on the used DIBR algorithm (e.g., triangulation

102 CHAPTER 4 — VOIDGA

or splatting) and its respective parameters (e.g., the distance threshold and point size).
To automatically determine suitable DIBR parameters, VOIDGA iteratively tunes the
DIBR parameters until it finds a local approximation error minimum (line 8). To this
end, each iteration compares the ground truth images to the current view approximation
results by computing the ADD and the MS-SSIM for each resulting pair. As soon as the
error increases, the automatic tuning is stopped, and the current error and DIBR settings
are communicated to the user. Although VOIDGA can run fully automatically, this gives
users the option to directly compare the current approximation against the ground truth
every time the grid is refined; either by directly contrasting the pairs, or by free camera
movement as long as the ground truth can be rendered at interactive framerates. Moreover,
users can adjust the database constraints and the error thresholds, which is especially
useful if proper initial settings are unknown.

After the automatic tuning, VOIDGA renders the approximated depth images D̂′

at the new sampling locations (line 10), and then selects the ground truth image D
that currently exhibits the largest approximation error Ê. If the current worst-case
approximation error Ê is below the threshold E, or if the database size exceeds the image
limit N, then VOIDGA advances to the final stage. Otherwise, D is removed from the list
of candidates D and is ADDed to the database D̂. This process then repeats until either
the thresholds are satisfied, or all candidate are ADDed. In the latter case, the sampling
grid is refined once more and the process repeats.

4.2.4 Database Downsampling
Finally, VOIDGA communicates to the user the impact of the image resolutions on
the overall approximation quality and the used disk space. Obviously, a lower image
resolution results in worse approximations, but the benefit of a significant disk space
gain might be worth a slightly worse approximation quality. Note, for this stage it is not
necessary to actually recompute the depth images D and D̂, instead they can be directly
downsampled from the high-res images.

Overall, this approach reduces the number of stored images, while asserting a minimal
approximation quality at the missing sampling locations. In the experiments presented
in Sec. 4.3, sequentially executing this process took roughly one minute. Note, however,
deriving new depth images and their scores is embarrassingly parallel, and therefore
VOIDGA is much more efficient in practice.

4.3 RESULTS 103

4.3 RESULTS
In the following, the effectiveness of VOIDGA is demonstrated and evaluated on several
real-world examples of varying complexity; including smooth surfaces (Sections 4.3.2
and 4.3.3), jagged surfaces (Sec. 4.3.4), and sparse line geometry (Sec. 4.3.5).

4.3.1 Error Plots
To evaluate the approximation quality of the following experiments, the resulting error
is examined qualitatively and quantitatively based on the two image similarity metrics
that have already been introduced in Sec. 4.2.1, i.e., the Multi-Scale Structural Similarity
Metric (MS-SSIM) and the Average Depth Difference (ADD). Specifically, for a given
image database that was either generated by uniform samples (U) or via VOIDGA (V),
a total number of 1,000 random view directions are derived on the surface of the unit
sphere, which are then used to generate ground truth renderings and approximated views.
Subsequently, the resulting images are compared with the image similarity metrics, which
yields a histogram for each database and its parameters. Figures 4.2 and 4.3 depicts
the results for a variety of databases, which are first grouped metric (individual figures),
then by dataset (rows), and then by approximation method (columns). Each of these
database groups are further subdivided by the used image resolution (left to right), and
the sampling method (colors).

The individual plots are discussed in their respective dataset section. Note, however,
that the databases generated by VOIDGA are always biased towards the approximation
method and error metric that was used during database generation, i.e, towards trian-
gulation and MS-SSIM for the viscous finger and ground water dataset, and towards
splatting and ADD for the jet dataset. Moreover, VOIDGA can obviously not outperform
the maximum refinement as it only collects a subset of these images. Yet, VOIDGA
performs in all case studies almost as good as the maximum refinement, although it uses
only around halve as much images.

104 CHAPTER 4 — VOIDGA

Multi-Scale Structural Similarity Metric

V
is

co
us

Fi
ng

er
s

Splatting Triangulation

G
ro

un
dw

at
er

Je
tS

te
am

lin
es

Figure 4.2: Approximation errors of the resulting image databases measured via the
Multi-Scale Structural Similarity Metric (MS-SSIM), and the Average Depth Difference
(ADD; Figure 4.3) for 1,000 random viewing positions on the unit-sphere. For each
metric, the error is computed for the splatted (cool colors, left column) and the triangulated
approximation (warm colors, right column) grouped first by dataset (rows), then by
image resolution (x-axis), and finally by the selection method of database elements
(individual bars). Legends indicate how many images were used as the basis for the view
approximation. The violin plots illustrate for each case the histogram of errors over the
random positions. This figure shows the MS-SSIM metric (higher values are better; 1.0
denoting identical images). It can be observed that for an increase in image and sampling
resolution the approximations converge to the ground truth, where VOIDGA databases
are biased towards the approximation method and the error metric that was used during
the optimization process, i.e., towards triangulation and MS-SSIM for the viscous finger
and ground water dataset, and towards splatting and ADD for the jet dataset.

4.3.1 ERROR PLOTS 105

Average Depth Difference
V

is
co

us
Fi

ng
er

s

Splatting Triangulation

G
ro

un
dw

at
er

Je
tS

te
am

lin
es

Figure 4.3: ADD metric in logarithmic scale (lower is better, 0.0 denoting perfect
reproduction). Again, VOIDGA is biased towards the used approximation method and
error metric during the optimization process, and therefore performs close to the maximal
sampling in these categories. As VOIDGA selects images in a Greedy approach, the
algorithm might select more images than strictly necessary, but can be employed in
situ without prior knowledge of the values underlying these diagrams. Moreover, some
specific view angles might not have a huge impact on the total approximation quality—
e.g., cameras that look into a cavity of the ground water dataset—but are still ADDed to
the database by VOIDGA. Except for the streamline dataset, the top-heavy histograms
for both metrics indicate that the distribution is skewed strongly towards higher similarity
with only few outliers. It becomes apparent that even without employing VOIDGA,
databases consisting of only 42 depth images with a resolution of 2562 pixels yield
adequate results.

106 CHAPTER 4 — VOIDGA

4.3.2 Viscous Fingering
The first case study demonstrates VOIDGA in an ideal application scenario: datasets
that exhibit large smooth surface areas. Specifically, VOIDGA was used to generate
a minimal image database for the viscous finger simulation ensemble that was already
introduced in Sections 2.4.2 and 3.3.1. Utilizing again the approach of Lukasczyk
et al. [63], viscous fingers can be identified as superlevel set components of the salt
concentration density estimates. Fig. 4.4 shows the ground truth isosurface geometry
and the view approximations, where the viscous fingers and the salt supply are colored
bright orange and dark gray, respectively. Quantitative results for this dataset are shown
in the left column of Figures 4.2 and 4.3. For smooth surfaces as the ones found in this
case study, triangulation outperforms the splatting technique. Not only does it exhibit
a lower approximation error, but also achieves a higher frame rate. Splatting causes a
warp of the original surface—i.e., creates an artificial width of the surfaces based on the
point size—which causes the generated views to score lower on the image metrics. As
shown in Figures 4.2 and 4.3, VOIDGA uses fewer images (23) than the complete second
icosahedron refinement (42), yet achieves similar error scores. Images that depict the top
of the salt supply are discarded by VOIDGA as the smooth surface of the supply can
already be approximated by the database backbone. The ADDitional images correspond
to view angles that were approximated badly before, but do not have a significant impact
on the overall approximation quality.

Splatting Ground Truth Triangulation

Figure 4.4: Comparison between the generated views (left and right) and the ground
truth (middle) for a random time step of the viscous finger dataset, where fingers are
shown in orange, and the salt supply in gray. The views are approximated using only 23
depth images with a resolution of 2562 pixels that were chosen by VOIDGA.

4.3.3 ASTEROID OCEAN IMPACTS 107

4.3.3 Asteroid Ocean Impacts
A second dataset exhibiting large and relatively smooth contours is part of a threat
assessment study of asteroid ocean impacts [85] that was made publicly available for the
2018 scientific visualization contest [43]. The dataset consists of several extreme scale
simulations that model different impact scenarios for varying impact angles, asteroid
sizes, and heights of potential airbursts. Fig. 4.5 depicts contours for the temperature
and water density field for impact scenario yA31, i.e., no airburst event, an asteroid
diameter of 250 meters, and an entry angle of 45 degrees. Specifically, the temperature
and water density contours for level 0.2 eV and 0.002 g/cm3 are shown in orange and
blue, respectively. The contours consist of roughly three million triangles that use up
around 110 MB uncompressed space, while the generated view was derived by only 12
depth images with a resolution of 5122 pixels for each contour, i.e., 24 depth images with
an uncompressed total size of 24 MB. The images were chosen using VOIDGA to ensure
approximation error bounds of 0.001 ADD and 0.97 MS-SSIM for the current view.
Large surfaces are accurately approximated, while the base of the water vapor exhibits
some approximation errors. Triangulations do not create adequate surface patches of
small features due to the low pixel density of the used depth images. Splatting, on the
other hand, renders points at the location of small features as long as they are depicted by
a depth image pixel. However, the splatted surface contains gaps that need to be filled by
increasing the point sizes, which in turn causes an artificial surface warp.

Splatting Ground Truth Triangulation

Figure 4.5: Comparison between the generated views (left and right) and the ground truth
(middle) for the asteroid impact dataset yA31 at cycle time 29945. The orange and blue
surfaces are contours of the temperature (0.2 eV) and water density field (0.002 g/cm3),
respectively. Views have been approximated using only 24 depth images with a resolution
of 5122 pixels that have been chosen by VOIDGA to bound the maximum approximation
error for the current view.

108 CHAPTER 4 — VOIDGA

4.3.4 Karst Limestone Ground Sample
This case study demonstrates that the proposed approach can also approximate very
complex surfaces with an acceptable error, and that it enables the composition of approxi-
mated and explicitly stored geometries. To this end, a Cinema database was created for a
karst limestone ground sample that was taken in south Florida. The ground sample was
provided by the Texas Advanced Computing Center (TACC) and the Florida International
University as a triangulated surface consisting of roughly 8 million triangles (gray surface
of Fig. 4.6 top). Domain experts involved in this research are primarily interested in
the propagation of ground water through the stone cavities (red streamlines of Fig. 4.6).
This dataset is challenging for depth image based geometry approximation since the
complex structure of the cavities occlude most of the interior geometry. To compensate,
it is usually necessary to sample depth images on a dense grid. VOIDGA, on the other
hand, determines a small set of samples that adequately reconstruct the outer shell of the
stone. However, to also demonstrate the effects of undersampling, this case study uses
only 42 depth images with a resolution of either 5122 or 1282 pixels that are sampled on
a once subdivided icosahedron (Fig. 4.1b).

The middle and bottom of Figure Fig. 4.6 show approximated views based on depth
image triangulation and splatting, respectively. The lighting of the complete scene is
performed in the post processing shader where screen space ambient occlusion greatly
enhances the perception of the stone porosity and the spatial arrangement of the stream-
lines. The uniform camera samples accurately reconstruct the outer structure of the stone,
but they do not depict the interior geometry of most cavities. Moreover, fine details of
the structure are only visible if the resolution of the depth images is high enough. Since
the proposed triangulation algorithm requires at least three neighboring depth pixels that
are below the distance threshold to create a surface patch, the resulting approximations
ignore one pixel wide surface depictions (Fig. 4.6 middle right). Splatting preserves these
features, as each depth image pixel is still represented by a single point (Fig. 4.6 bottom
right). However, the size of these points must be large enough to fill the gaps between
points, which gives the incorrect impression that surfaces have a thickness. Yet, this
greatly improves the 3D perception and emphasizes hard edges such as cavity borders.
Nevertheless, rendering the point cloud is more expensive than rendering the triangulation.
The triangulation also enables the more accurate estimation of surface normals since
splatting renders each point as a flat disc that faces the camera, which causes depth
discontinuities at the disc boundaries, and thus a rough surface appearance.

4.3.4 KARST LIMESTONE GROUND SAMPLE 109

Figure 4.6: View approximations of the limestone dataset (top) based on 42 depth
images with a resolution of 5122 pixels that are sampled on the vertices of a once
refined icosahedron. The dataset was provided by the Texas Advanced Computing Center
(TACC) and the Florida International University. The images show the path of water
(red streamlines) through a karst limestone ground sample (gray) that was taken in south
Florida. As the approximations show a view angle that was not covered by the used depth
images, the approximation error is largest in the cavities where no geometric information
is available. Nevertheless, the outer structure is accurately reconstructed even for the
relatively low number and resolution of the depth images. Deploying VOIDGA improves
the approximation quality as it ADDs only view angles that contribute the most to the
current approximation, i.e., view angles that look into currently undepicted cavities.

110 CHAPTER 4 — VOIDGA

To emphasize the impact of the image resolution, Fig. 4.7 shows the geometry
approximations that result from using images with only 1282 pixels. These depth images
do not have a sufficient resolution to represent small cavities, as neighboring pixels are
too far apart in world space, while the drastically varying surface between the pixels is
not depicted. However, even at this resolution, prominent features such as the big cavities
are clearly identifiable. Image triangulations requires a fairly high distance threshold
to coincide with the rough shape of the original surface, which results in numerous
distorted triangles. Splatting also requires a large point size to fill gaps. Because the
triangulation connects neighboring pixels with similar depth values, splatting produces
much better results for low resolution images as each pixel is still mapped to 3D space
independent of its neighbors at the price of warping the resulting surfaces. Therefore,
the splatted representation coincides better with the shape of the original triangulation,
but the large points let the surfaces appear very thick. This is also reflected in the error
metrics (Figures 4.2 and 4.3, second row). Especially the MS-SSIM is very sensitive to
the surface warps. Furthermore, a database derived by VOIDGA uses far fewer images
(82) than the maximum refinement level (162) while achieving similar approximation
errors. Since the cylindrical stone sample has a relatively smooth backside, VOIDGA
primarily stores images that depict the front and the inside of cavities.

An advantage of the modular design of the demonstrated DIBR algorithm is that the
approximated geometry can be rendered together with non-approximated geometry. For
instance, the red streamlines of Fig. 4.6 are explicitly stored geometries that are correctly
composed with the approximated geometry. Based on this principle, extremely large
simulation elements can be approximated by depth images, while specific features of
smaller size can be stored explicitly.

4.3.4 KARST LIMESTONE GROUND SAMPLE 111

Figure 4.7: Illustration of view approximations generated by depth images with an
insufficient image resolution. In this case, the views have been generated with 42 depth
images with a resolution of only 1282 pixels. For such low resolutions, splatting (bottom)
produces far better results since points are rendered independently at the locations of every
depth image pixel, while image triangulations (middle) require at least three neighboring
pixels that span a non distorted triangle. However, the huge point sizes have a drastic
impact on the used error metrics.

112 CHAPTER 4 — VOIDGA

4.3.5 Jet Streamlines
Sparse line geometry is another challenge for DIBR due to the strong depth variations
of neighboring pixels. Therefore, this case study examines a set of streamlines that
correspond to particle paths of a CFD Jet simulation (Sec. 3.3.2).

For this case study, VOIDGA was tuned to generate a database with a focus on high
quality depth approximations rather than image similarity, effectively de-emphasizing
color reproduction. This can be done by enforcing a strict ADD threshold (0.0004) and
a relaxed MS-SSIM threshold (0.8). Still, the approximations cause large errors for
small image resolutions (Figures 4.2 and 4.3, right column) as they are not sufficiently
large enough to distinguish between individual streamlines. Thus, the image triangulation
falsely connects neighboring streamlines via surface patches (Fig. 4.8 right). Although
splatting can still produce convincing results, the necessary large point size bloats the
streamlines (Fig. 4.8 left), which has a significant impact on the error metrics. Yet, the
VOIDGA database (72 images) and the maximum refinement level (162 images) achieve
similar errors. The colors of the streamlines encode their lifetime and are mapped post
hoc. This requires to store for each depth image an ADDitional floating point image
that records at each pixel the lifetime of the depicted part of the streamlines. The ability
to apply a color map post hoc on the approximated geometries demonstrates that the
proposed approach can be easily combined with the existing practice of image databases.

Splatting Ground Truth Triangulation

Figure 4.8: Comparison between the generated views (left and right) and the ground truth
(middle) for the jet dataset. To emphasize potential visual errors, the views have been
approximated by using only the database backbone (12 depth images) with a resolution
of either 2562 or 5122 pixels for the splatting or triangulation technique, respectively.

4.4 DISCUSSION 113

4.4 DISCUSSION
This chapter presented a novel view-approximation oriented image database generation ap-
proach (VOIDGA) that determines and stores a minimal set of images for the generation
of arbitrary views while bounding the maximum approximation error. As demonstrated
on several challenging real-world examples, VOIDGA can reduce image database sizes
and the number of images that need to be processed by DIBR methods. VOIDGA can
also ensure that a disk space budget is used to its full potential, which stands to be useful
for in situ visualization, but also for sharing visualization results where bandwidth usage
is of importance. The resulting approximation errors were examined qualitatively and
quantitatively via two image-based comparison metrics: the ADD and MS-SSIM. The
results indicate that a relatively low number of database elements (∼ 42) at medium
resolution (∼ 5122) can already produce high quality approximations. Moreover, smooth
surfaces can be well approximated by triangulations, whereas extremely jagged surfaces,
sparse line-geometry, and low-resolution depth images are best approximated by splatting.

Towards adapting VOIDGA for production use, many improvements appear possi-
ble. Due to the modular design of VOIDGA, it is possible to integrate more advanced
DIBR methods and other error metrics to further improve the resulting approximation
quality. VOIDGA could also store view-dependent resolutions and feature-based camera
locations. For example, depictions of smooth surfaces could be stored at low resolution,
whereas detailed surface variations and important features are depicted by high-res im-
ages. However, as VOIDGA builds on top of DIBR techniques, it is necessary to derive
and store depth images. Thus, VOIDGA does currently not support the approximation
of volume renderings and transparent geometry. In this case, one needs to adapt other
techniques such as image warping [50] or volumetric depth images [9, 34].

VOIDGA was demonstrated with fairly rudimentary DIBR approaches (depth image
triangulation and splatting). Although they require a minimal overhead and already
produce acceptable results, more advanced DIBR methods are expected to produce
higher quality approximations. Such techniques can easily be integrated into VOIDGA
due to its modular design. Moreover, both presented DIBR implementations require
parameters (the distance threshold and the point size) that have a significant impact on the
resulting approximation quality. VOIDGA is capable of automatically finding suitable
initial parameters, but the current tuning procedure can get stuck in local extrema. To
solve this problem, it is necessary to deploy more advanced optimization techniques such
as simulated annealing [47].

114 CHAPTER 4 — VOIDGA

Naturally, the effectiveness of VOIDGA depends strongly on the used comparison
metrics. Although the demonstrated image metrics measure geometry representation
(ADD) and image similarity (MS-SSIM), both are not without drawbacks. The most
significant problem is their strong dependence on the background to foreground ratio.
In effect, a larger background will result in better similarity scores which is not ideal
for real-world settings. Moreover, the ADD is computed for normalized depth values,
and therefore depends on the precision of the depth buffer. The MS-SSIM, on the other
hand, requires input parameters that can currently only be chosen heuristically [111].
Furthermore, both metrics evaluate the overall image quality, and thus neglect small but
potentially important features. Therefore, it is necessary to develop and integrate other
image metrics to improve the optimization process.

115

CHAPTER 5

DYNAMIC NESTED TRACKING GRAPHS

This chapter combines Nested Tracking Graphs (Ch. 3) and Cinema Databases (Ch. 4) to
enable the interactive post hoc visual analysis of large-scale simulations with numerous
superlevel set components (Sec. 5.1). The approach first derives, at simulation runtime,
a specialized Cinema database that consists of various rendering and analysis products,
including images of component groups, merge trees, and intermediate data structures that
store tracking information (Sec. 5.2). This database is processed post hoc by an efficient
graph operation-based algorithm to dynamically compute nested tracking graphs (NTGs)
for component groups based on size, overlap, persistence, and level thresholds, while also
compositing component images from the database into 3D renderings of the simulation
(Sec. 5.3). As demonstrated in three case studies (Sec. 5.4), the generated databases grow
only proportional to the parameter sampling independent of the actual simulation size,
and the efficient graph operation-based NTG algorithm and image compositing procedure
enable the interactive post hoc exploration of large-scale simulations (Sec. 5.5).

116 CHAPTER 5 — DYNAMIC NESTED TRACKING GRAPHS

5.1 MOTIVATION
The previous chapters described a robust topology-based methodology to characterize
and track features based on level, sublevel, and superlevel set components. However,
applying the proposed methodology in the context of large-scale simulations containing
numerous features poses additional challenges. Specifically, it is often infeasible to
store every simulation state due to bandwidth and disk space constrains, and thus it
is no longer possible to explicitly compute, filter, track, and render features post hoc
for new parameters; such as different level, overlap, or persistence thresholds. This
limitation necessitates in situ algorithms that store, at simulation runtime, the least
amount of information needed to still support flexible post hoc analysis. Moreover, visual
analytic frameworks for massive amounts of features require level-of-detail approaches
that partition features into a manageable number of groups.

This chapter describes an approach that addresses these issues by combining and
extending Cinema databases (Ch. 4) and nested tracking graphs (Ch. 3) for in situ database
generation and post hoc database exploration, respectively (Fig. 5.1). Recall, a NTG
consists of layers of common tracking graphs, where each layer visualizes the evolution
of superlevel set components for a fixed level, and edges of different layers are drawn
inside each other based on the nesting hierarchy of the components (Fig. 3.1). The
approach presented in this chapter is based on the fact that superlevel set components
merge while decreasing the level, i.e., lower layers of the NTG automatically bundle
higher-level components, effectively summarizing their evolution. * Thus, instead of
visualizing a cluttered view consisting of thousands of lines that represent individual
features, NTGs can be used to display a limited number of lines that represent meaningful
component groups. This hierarchical decomposition can also be used during the in
situ database generation to store images of component groups instead of the individual
features. As a consequence, this approach reduces the amount of stored information while
still supporting common post hoc analysis tasks; such as toggling the visibility of groups,
coloring them based on the tracking results, and linking component images and NTGs.
To this end, the approach includes an efficient graph operation-based algorithm that is
capable of dynamically computing NTGs post hoc at interactive framerates by processing
split trees and other intermediate data structures that have also been stored at simulation
runtime. Combining these algorithms in a feature-centric visual analytics framework
enables the interactive post hoc analysis of large-scale simulations. The central benefit of
this scalable methodology is the fact that the generated databases only grow proportional
to the parameter sampling, independent of the actual geometry and number of features.

*The methodology presented in this chapter can be applied symmetrically to sublevel set components.

5.1 MOTIVATION 117

In
Si

tu
D

at
ab

as
e

G
en

er
at

io
n

C
in

em
a

D
at

ab
as

e
Po

st
H

oc
D

at
ab

as
e

E
xp

lo
ra

tio
n

Si
m

ul
at

io
n

D
at

a

Sp
lit

Tr
ee

C
om

pu
ta

tio
n

(S
ec

.2
.3

.2
)

D
om

ai
n

Se
gm

en
ta

tio
ns

A
ug

m
en

te
d

Sp
lit

Tr
ee

s

Im
ag

es

M
et

a-
E

dg
es

Sp
lit

Tr
ee

s

Se
gm

en
ta

tio
n

Tr
ac

ki
ng

(S
ec

.5
.2

.1
)

Im
ag

e
G

en
er

at
io

n
(S

ec
.5

.2
.2

)

R
efi

ne
m

en
t

(S
ec

.5
.2

.1
)

N
es

te
d

Tr
ac

ki
ng

G
ra

ph
s

3D
V

ie
w

L
ev

el
an

d
Pe

rs
is

te
nc

e
Pa

ra
m

et
er

s

N
T

G
C

om
pu

ta
tio

n
(S

ec
.5

.3
.1

)

Im
ag

e
C

om
po

si
tin

g
(S

ec
.5

.3
.2

)

In
te

ra
ct

iv
e

A
na

ly
si

s
(S

ec
.5

.3
.3

)

Fi
gu

re
5.

1:
Pr

oc
es

si
ng

pi
pe

lin
e

of
th

e
pr

es
en

te
d

ap
pr

oa
ch

th
at

co
ns

is
ts

of
th

e
in

si
tu

da
ta

ba
se

ge
ne

ra
tio

n
an

d
th

e
po

st
ho

c
da

ta
ba

se
ex

pl
or

at
io

n.
D

ur
in

g
si

m
ul

at
io

n
ru

nt
im

e,
th

e
ap

pr
oa

ch
de

riv
es

fo
re

ac
h

tim
es

te
p

th
e

sp
lit

tr
ee

an
d

its
as

so
ci

at
ed

do
m

ai
n

se
gm

en
ta

tio
n

to
co

m
pu

te
tr

ac
ki

ng
in

fo
rm

at
io

n,
im

ag
es

of
fe

at
ur

e
gr

ou
ps

,a
nd

re
fin

ed
sp

lit
tr

ee
s,

w
hi

ch
ar

e
st

or
ed

in
a

C
in

em
a

da
ta

ba
se

.D
ur

in
g

po
st

ho
c

an
al

ys
is

,t
he

da
ta

ba
se

el
em

en
ts

ar
e

us
ed

to
dy

na
m

ic
al

ly
co

m
pu

te
ne

st
ed

tr
ac

ki
ng

gr
ap

hs
,c

om
po

si
te

3D
vi

ew
s

of
fe

at
ur

e
gr

ou
ps

,a
nd

to
vi

su
al

iz
e

th
e

sp
lit

tr
ee

s
an

d
th

ei
r

co
rr

es
po

nd
in

g
pe

rs
is

te
nc

e
di

ag
ra

m
s,

w
hi

ch
ar

e
al

li
n

tu
rn

in
te

gr
at

ed
in

a
fe

at
ur

e-
ce

nt
er

ed
vi

su
al

an
al

yt
ic

s
fr

am
ew

or
k

to
ef

fe
ct

iv
el

y
ex

pl
or

e
th

e
un

de
rl

yi
ng

si
m

ul
at

io
n.

118 CHAPTER 5 — DYNAMIC NESTED TRACKING GRAPHS

5.2 IN SITU DATABASE GENERATION
During the simulation, the presented approach computes for every timestep t the complete
split tree segmentation S̃t = (C+t ,φt ,ψt) that consists of the split tree C+t , the domain
segmentation φt , and the tree scalar field ψt (Def. 44). Optionally, each timestep can
be first simplified by persistence to remove noise (Sec. 2.3.6). These procedures are
implemented in the Topology ToolKit [36, 104, 106]. The unaugmented split tree C+t and
the tree scalar field ψt are immediately stored in a Cinema database (Sec. 2.5), whereas
the augmented split tree is used to compute intermediate data structures that enable post
hoc component tracking (Sec. 5.2.1), and to derive a reduced set of images of component
groups that can later be composed again into 3D scenes (Sec. 5.2.2).

5.2.1 Merge Tree Segmentation-Based Tracking
To compute tracking graphs, it is necessary to determine the relationship between su-
perlevel set components at adjacent timesteps. During post hoc analysis, it is no longer
possible to explicitly compute their overlap as the volumetric data is no longer available.
This triggered a line of research that aims to pre-compute tracking information to effi-
ciently derive tracking graphs without reprocessing the original data [12, 79, 114, 119].
A prime example of such an approach is the so-called meta-graph [114] that records the
overlap of component groups for discrete level intervals.

Alg. 8 is an adaption of this approach that derives edges of the meta-graph by process-
ing two split tree segmentations (C+0 , φ0, ψ0) and (C+1 , φ1, ψ1) of consecutive PL Morse
scalar fields that are defined on the same PL manifoldM.† Recall, a domain segmentation
function φi maps any point of the domainM to a vertex or edge of the split tree C+i , and
the tree scalar field ψi assigns to each point on C+i the corresponding level value. Thus,
these segmentations partition the domain into connected regions, called segments, that
correspond to individual split tree edges (colored regions and edges in Fig. 5.2). Intro-
ducing regular vertices along tree edges further subdivides segments and will increase
the tracking accuracy. Note, each split tree edge ⟨u,v⟩ ∈ C+i with ψi(u) < ψi(v) can
uniquely be identified by v, and therefore v is called the edge/segment representative. This
segmentation-based tracking algorithm is based on the fact that the border of a superlevel
set component (dashed lines in Fig. 2.6d, left) is completely contained in the domain
segment of its corresponding split tree edge (colored region and edges in Fig. 2.6c). As a
consequence, if two segments overlap at a vertex v, then at least the superlevel sets for
the smallest level among both corresponding intervals intersect at v. The smallest level of
both intervals is therefore referred to as the base level b. Obviously, the accuracy of this

†This algorithm can symmetrically be formalized for join tree segmentations.

5.2.1 MERGE TREE SEGMENTATION-BASED TRACKING 119

approach depends on the interval ranges, as the superlevel set at the base level represents
all components for the interval of its corresponding edge. The algorithm then records the
amount of spatial overlap between segments by so-called meta-edges EM that connect the
representatives of the corresponding split tree edges (red arrows in Fig. 5.2).

Algorithm 8: ComputeMetaEdges(PLMM, MTS (C+0 , φ0, ψ0), MTS (C+1 , φ1, ψ1))

1 EM ← /0 // Set of Meta-Graph Edges

2 foreach vertex v ∈M do

3 // Get edges that correspond to segments
4 (e0, e1) ← GetSegmentEdges(v, C+0 , φ0, C+1 , φ1)

5 // Get edges that include base level
6 b ← min(minψ0(e0), minψ1(e1))
7 (ê0, ê1) ← GetBaseEdges(b, C+0 , ψ0, e0, C+1 , ψ1, e1)

8 // Connect all representatives towards the root
9 AddMetaGraphEdges(EM, ê0, ê1, C+0 , ψ0, C+1 , ψ1)

10 return EM

ti ti+1

A

B

12

0123

C

D

E

1 2

0 1 2 3

2 3

f 00 11 22 33 44

R0

S0

B′

B′′

B

A′
A

R1

S1

S2

E ′

E

D′
DC′

C

Figure 5.2: Illustration of the merge
tree segmentation-based tracking ap-
proach that processes two split trees
(bottom) and their respective domain
segmentations (top) of two adjacent
timesteps (left and right). Form time
step ti to ti+1, the maximum B splits
into the two maxima D and E, and the
maximum A moves from the left to the
right side of the domain. The overlap
of segments are recorded by so-called
meta-graph edges between their corre-
sponding representatives (red arrows).
For example, the dark blue and dark
green segments overlap, which justifies
the meta-graph edge ⟨A′,C′⟩. The light
blue and the light green segments, how-
ever, do not overlap, i.e., there exists
no meta-graph edge between A and C.
Note, the meta-graph edges correctly
record the evolution of the overlapping
segments across all intervals. Yet, the
accuracy of the matching depends on
the resolution of the intervals.

120 CHAPTER 5 — DYNAMIC NESTED TRACKING GRAPHS

Specifically, Alg. 8 initializes the meta-edges EM as an empty set, and then processes
each vertex v ∈M in three steps. First, line 4 retrieves for a vertex v the corresponding
edges e0 ∈ C+0 and e1 ∈ C+1 (thick edges of Fig. 5.3b) with the domain segmentation
functions φ0 and φ1. Note, these edges do not have to correspond to the same level
interval. As explained earlier, it can only be guaranteed that the respective superlevel
sets for the base level intersect at v, where the base level b is the minimum of both level
intervals associated with e0 and e1. Next, it is necessary to find the edges ê0 ∈ C+0 and
ê1 ∈ C+1 whose respective intervals include the base level. This is done with the procedure
GetBaseEdges that traverses each split tree C+i starting at the edge ei towards the root until
it finds and returns the first edge whose interval includes the base level b (thick edges of
Fig. 5.3c). With the same argument as before, it is guaranteed that components of the base
edges overlap for the base level, and therefore the procedure AddMetaGraphEdges adds a
meta-edge between their representatives (red arrow in Fig. 5.3c). Furthermore, if features
of these edges overlap, then also do the features of the edges towards the root. Therefore,
the procedure AddMetaGraphEdges synchronously traverses both trees towards the root
and adds meta-graph edges (red arrows in Fig. 5.3d) between the representatives of the
visited edges (thick edges in Fig. 5.3d). This procedure can also additionally record the
amount of spatial overlap between segments, e.g., by counting how often a meta-graph
edge would have been added during all iterations. Finally, the algorithm returns the set of
meta-graph edges between the two segmentations.

This procedure can be executed iteratively for each adjacent pair of a PL Morse
scalar field sequence to derive the complete set of meta-graph edges, and in an in situ
environment it is only necessary to keep the segmentations of the previous and current
timestep in memory. The meta-graph then corresponds to the union of all split trees and
meta-graph edges. The described procedure is implemented in the TrackingFromMerge-
TreeSegmentations module [61] of the Topology ToolKit [104], which was used for all
experiments described in Sec. 5.4.

Meta-graphs enable the efficient post hoc computation of tracking graphs for any level
l, solely based on their structure and the tree scalar fields. Specifically, a trivial algorithm
first retrieves the set of split tree edges of the meta-graph whose intervals include l, and
creates for each such edge a vertex in the resulting tracking graph. These vertices are
subsequently connected based on the corresponding meta-graph edges that belong to
the representatives of the split tree edges. Sec. 5.3.1 describes a graph operation-based
algorithm that derives nested tracking graphs.

5.2.1 MERGE TREE SEGMENTATION-BASED TRACKING 121

a)

ti ti+1

A

Bv

C

D

E

v

b)

f 00 11 22 33 44

R0

S0

B′

B′′

B

A′
A

R1

S1

S2

E ′

E

D′
DC′

C

v

v

c)

f 00 11 22 33 44

R0

S0

B′

B′′

B

A′
A

R1

S1

S2

E ′

E

D′
DC′

C

v

v

d)

f 00 11 22 33 44

R0

S0

B′

B′′

B

A′
A

R1

S1

S2

E ′

E

D′
DC′

C

v

v

Figure 5.3: Illustration of one inner
iteration of Alg. 8 that processes a
vertex v of the example scalar field
introduced in Fig. 5.2. First, the algo-
rithm retrieves for vertex v the cor-
responding edges of the split trees
(thick edges in Figure b). Next, it
traverses both trees towards the root
until it finds the base edges (thick
edges in Figure c), i.e., edges towards
the root whose corresponding inter-
vals include the base level (in this
example 1). In step three, the al-
gorithm adds a meta-graph edge be-
tween the representatives of the base
edges (red arrow in Figure c), and
then continuous traversing the trees
towards the root while also connect-
ing the representatives of the visited
edges (Figure d). Note, this correctly
records the possible overlaps of su-
perlevel sets that include vertex v.
Specifically, superlevel sets for level
1 overlap at v (as indicated by the
meta graph edge ⟨B′,S2⟩), but not for
level 2 (as indicated by the absence
of a meta-graph edge from B′′ to D′

or E ′). Iterations processing the re-
maining vertices add additional meta-
graph edges, or increase the inci-
dences of existing ones. For instance,
a vertex located in the dark purple
segment introduces the meta-graph
edge ⟨B′′,D′⟩, and increases the over-
lap of meta-graph edges ⟨B′,S2⟩ and
⟨S0,S1⟩. This again shows that the ac-
curacy of the segmentation matching
depends on the resolution of the level
intervals.

122 CHAPTER 5 — DYNAMIC NESTED TRACKING GRAPHS

5.2.2 Image Generation
To provide an interactive 3D rendered view of the simulation post hoc, the proposed
approach also stores, at simulation runtime, images of superlevel set component groups
that can later be composed again into 3D scenes. The following algorithm is built on
top of the original Cinema approach [2] that generates images for a Cartesian product
of the parameter space (Sec. 2.5). Database viewers then enable users to browse the
structured image stores by selecting interesting parameter combinations from parallel
coordinate plots [115], by performing queries [3, 104], or by snapping to the closest
available camera locations while navigating an emulated 3D view [82]. The approach
described in Ch. 4 can even compute a reduced set of images that enable free camera
movement by approximating the depicted surfaces. However, a limitation of Cinema
databases is that the flexibility of the post hoc analysis is limited by the generated images.
Thus, if the database does not contain individual feature images, it is not trivially possible
to toggle their visibility. Storing an image of each feature is also problematic as this
drastically increases the amount of database elements. Therefore, it is necessary to depict
feature in groups with common post hoc analysis tasks in mind.

In the context of tracking superlevel set components in large-scale simulations, an-
alysts should be able to toggle the visibility of components that are locally clustered
together, and further filter components based on persistence. To this end, the proposed
approach partitions components into a predefined number of groups based on a branch
decomposition B of the current split tree C+t , and a list of persistence intervals P. The
algorithm then generates images for each resulting component group. Specifically, the
inputs of Alg. 9 are PL manifold M, its PL scalar function f , a split tree segmenta-
tion (C+t , φt , ψt), a set of camera specifications C, a set of levels L, a sorted list of
persistence thresholds P, and the maximum number of component groups n; i.e., each
timestep yields at maximum |C| · |L| · |P| ·n images. First, the algorithm sorts all branches
by persistence in descending order, and then inserts the n most persistent branches into
their own new group (line 1-6). Each remaining branch is then inserted into the group
that contains the most persistent branch it is attached to (lines 7-11). Note, such a branch
and the corresponding group must exist as the branches are processed in sorted order.

Next, the algorithm iterates over the groups G ∈ G, and the persistence intervals
defined by P, to determine in each iteration the branches B̂ ⊆ G ∈ G inside the current
persistence interval (Pi,Pi+1]. Then, the algorithm derives for each level l ∈ L the set
of individual contours X of the current group, i.e., the borders of the superlevel set
components. This is done by first determining the branches that include the current
level, where each such branch B indicates the existence of an individual superlevel set

5.2.2 IMAGE GENERATION 123

component. To derive the set of simplices M̂ ⊆M that together completely contain the
component of B, the algorithm first collects the set of edges Ĉ+ that are connected to B
above the current level (the upper subtree of B that exceeds the level), and then retrieves
all simplices ofM that share at least one vertex with the subtree domain φ−1(Ĉ+). It is
necessary to include the tetrahedra adjacent to the subtree domain as they might contain
parts of the linearly-interpolated contours.

Algorithm 9: GenerateImages(M, f , C+t , φt , ψt , C, L, P, n)
1 // Get branches sorted by persistence in descending order
2 B ← ComputeBranchDecomposition(C+, ψt)

3 // Create groups for the first n most persistent branches
4 G ← NewUnionFind()
5 for i← 0 to n−1 do
6 NewGroup(G, Bi)

7 // Add remaining branches to closest group
8 for i← n to |B| do
9 B ← GetMostPersistentAttachedBranch(B, Bi, ψt)

10 G← FindGroup(G, B)
11 AddToGroup(G, Bi)

12 // Generate group images for all persistence intervals and levels
13 foreach group G ∈ G do
14 foreach threshold pi ∈ P where pi ̸= max(P) do

15 // Filter grouped branches by persistence
16 B̂ ← { B ∈ G | pi < (max ψt(B)−min ψt(B))≤ pi+1 }
17 foreach level l ∈ L do

18 // Add contour for each filtered branch that includes level
19 X ← /0 // Set of contours
20 foreach B ∈ B̂ where min ψt(B)< l ≤ max ψt(B) do
21 Ĉ+ ← GetUpperTreeOfBranch(B, C+t , ψt , l)
22 M̂ ← { σ ∈M | σ ∩φ

−1
t (Ĉ+) ̸= /0 }

23 AddContour(X , M̂, f , l)

24 // Render depth and ID image of contours for each camera
25 foreach camera c ∈C do
26 I ← RenderContours(X , c)
27 StoreInCinemaDB(I, G, pi, pi+1, l, c)

28 StoreInCinemaDB(G, t)

124 CHAPTER 5 — DYNAMIC NESTED TRACKING GRAPHS

Finally, the algorithm renders for all camera angles C a depth image and an ID mask
of all contours (Fig. 5.4), where the depth images are used during post hoc analysis to
compose 3D views (Fig. 5.5), and a pixel of the ID mask stores the representative of the
split tree edge that corresponds to the depicted contour. The images are then stored in the
Cinema database, where they are also associated to the parameters that uniquely identify
the images: their group ID, persistence interval, level, and camera angle. To efficiently
retrieve during post hoc analysis an image that depicts a specific contour, the algorithm
also stores, in line 28, the branch groups G of the current timestep in the Cinema database.

Note, the image generation is embarrassingly parallel as images for component groups
and camera angles can be rendered independently. A limitation of this approach is that
the sampling resolution of the parameter space is directly proportional to the resulting
image database size. Moreover, the parameter sampling has to be determined beforehand,
in which case adequate parameters might be unknown.

Figure 5.4: Four generated images of ∼ 5k vortices from the jet dataset at timestep 2000
based on two groups (top and bottom) and two persistence intervals (left and right).

5.2.2 IMAGE GENERATION 125

Figure 5.5: 3D view of the jet dataset composited with the four images of Fig. 5.4.

126 CHAPTER 5 — DYNAMIC NESTED TRACKING GRAPHS

5.3 POST HOC DATABASE EXPLORATION
This section describes the novel graph operation-based NTG algorithm (Sec. 5.3.1), the
image compositing pipeline (Sec. 5.3.2), and the visual analytics framework (Sec. 5.3.3)
that all use the generated Cinema database to analyze the underlying simulation post hoc.

5.3.1 Dynamic Nested Tracking Graphs
The core element of the post hoc analysis interface is a NTG that enables users to
browse the simulation data across time and levels. Computing the NTG with the original
procedure described in Alg. 5 would make it necessary to predefine a set of levels,
explicitly compute the superlevel set components for those levels, and then test the
resulting components for spatial overlaps across time (to determine their evolution) and
across levels (to determine their nesting hierarchy). Thus, changing the levels requires
the re-computation of all components, which is inefficient and unsuitable for large-scale
simulations and in situ use cases.

Alg. 10 outlines a purely graph operation-based NTG algorithm that efficiently com-
putes NTGs for a sorted list of adjacent timesteps T , a sorted list of levels L, and the
graph structures that have been stored in the Cinema database at each timestep during
the simulation: the split trees C+, their scalar functions ψ , and the meta-edges EM. First,
the algorithm determines the superlevel set components that are present for all timesteps
and levels based only on the split trees C+ and their corresponding scalar fields ψ . Given
a timestep t ∈ T and a level l ∈ L, the algorithm inserts a new vertex into the set V for
each edge ⟨u,v⟩ ∈ C+t whose corresponding level interval includes l, as each such an
edge represents an individual superlevel set component (red vertices in Fig. 5.6). In
the following, each vertex of V is denoted as vl

t to compactly indicate its corresponding
timestep t, level l, and edge representative v in the split tree C+t . The nesting hierarchy EN

(red edges in Fig. 5.6) of the computed vertices V follows immediately from the structure
of the split trees (black edges in Fig. 5.6). To identify the connections between vertices
at level li ∈ L for i > 0 (children) with vertices at level li−1 ∈ L (parents), the algorithm
simply traverses the tree from each child towards the root until it encounters a parent and
then inserts a new edge into EN accordingly. Since the algorithm descends in a rooted
tree, there always exists exactly one parent for each child. Finally, the algorithm needs to
establish the relationships between vertices at the same level for adjacent timesteps t and
t +1. This can be done efficiently via the meta-edges EM,t of timestep t. Specifically, for
each two vertices ul

t and vl
t+1 one can determine if the segments that are represented by u

and v overlap by checking if EM,t contains the meta-edge ⟨u,v⟩. If it does, the algorithm
adds the edge ⟨ul

t , vl
t+1⟩ to ET . It is possible to filter tracking graph edges via an overlap

5.3.1 DYNAMIC NESTED TRACKING GRAPHS 127

threshold, or relax the tracking accuracy by adding edges if there exists an meta-edge
for a vertex pair further down in the split tree. Such a relaxation enables the tracking of
fast moving components whose corresponding segments only overlap for lower levels.
The advantage of the proposed algorithm is that such criteria can be interactively chosen
post hoc without access to the original simulation data. That the computed graph is
indeed a NTG according to Def. 50 follows directly from Alg. 10, and the fact that
the subprocedure AddMetaGraphEdges of the segmentation-based tracking algorithm
(Alg. 8) recursively adds meta-edges between overlapping segments (Fig. 5.3d). The
resulting NTG can be rendered with Alg. 6. The graph operation-based NTG algorithm is
implemented in the NestedTrackingGraph module [61] of the Topology ToolKit [104].

Algorithm 10: ComputeNTG(Times T , Levels L, Split Trees (C+, ψ), Meta-Edges EM)
1 V, EN , ET ← /0 // Vertices, Nesting Trees, Tracking Graphs

2 // Compute Vertices
3 foreach timestep t ∈ T do
4 foreach level l ∈ L do
5 foreach edge ⟨u,v⟩ ∈ C+t where ψt(u)< l ≤ ψt(v) do
6 AddVertex(V , v, l, t)

7 // Compute Nesting Trees
8 foreach vertex vl

t ∈ V where l ̸= min(L) do
9 AddEdge(EN , vl

t , GetParent(vl
t , V , C+t , ψt))

10 // Compute Tracking Graphs
11 foreach vertex ul

t ∈ V where t ̸= max(T) do
12 foreach vertex vl

t+1 ∈ V do

13 if ⟨u,v⟩ ∈ EM,t then
14 AddEdge(ET , ul

t , vl
t+1)

15 return V ∪EN ∪ET

X

Y

B

Z
C

D

A

X l0

Al1 Y l1

Al2 Zl2 Bl2

Dl3 Bl3

l0

l1

l2

l3
Figure 5.6: Vertex and nesting tree computation
based on split trees. Vertices correspond to edge-
cuts (red nodes) for a set of levels (dashed lines),
where each vertex represents a single superlevel
set component, and is labeled by its correspond-
ing edge representative, level, and timestep (here
omitted). To determine their nesting hierarchy (red
edges), the algorithm traverses the split tree from
each vertex at level li with i > 0 towards the root,
until the algorithm reaches its parent at level li−1.

128 CHAPTER 5 — DYNAMIC NESTED TRACKING GRAPHS

5.3.2 Image Retrieval and Compositing
To retrieve the image of a component corresponding to a vertex vl

t ∈ V of the NTG for a
specific camera angle, one first determines its branch group G ∈ Gt , and then computes
the persistence interval of the branch containing the edge represented by the vertex v∈ C+t
(Sec. 5.2.2). All parameters are then used to retrieve the closest available image in
the database. Fig. 5.7 illustrates the Depth Image Based Rendering (DIBR) pipeline
that composes multiple depth images and ID masks into a single image. To improve
spatial perception, the images are shaded based on approximated surface normals and
screen space ambient occlusion, where components are colored based on the ID masks.
Alternatively, it is also possible to use the geometry approximation algorithms described
in Sec. 2.6 and Ch. 4 to enable free camera movement.

(a)

(b)

(c)

Figure 5.7: Depth image-based rendering pipeline: multiple depth images and ID masks
are respectively composed into a single image (a), which are shaded based on approxi-
mated surface normals (b) and screen space ambient occlusion (c) in order to improve
spatial perception.

5.3.3 VISUAL ANALYTICS FRAMEWORK 129

5.3.3 Visual Analytics Framework
Fig. 5.8 shows all linked components of the post hoc visual analytics framework that
enables users to effectively explore the generated Cinema database: a composed 3D scene
(top left), a split tree (top center), a persistence diagram (top right), and a nested tracking
graph (bottom). User interface (UI) elements that correspond to an individual superlevel
set component are consistently colored across all views, i.e., edges of the NTG, images
of the components, branches of the split tree, and critical-point pairs of the persistence
diagram. The core element of the interface is the NTG that illustrates the evolution of
components for multiple levels, whereas the split tree shows their nesting hierarchy for
the current timestep, and the persistence diagram shows their significance. The NTG
is used to select time intervals, individual timesteps, and specific components, and the
split tree and persistence diagram support analysts in choosing appropriate levels and
persistence thresholds. The current persistence threshold is drawn as a diagonal red
line in the persistence diagram, and levels of the NTG are drawn as horizontal lines in
the split tree and persistence diagram, where the line of the currently selected level is
also colored red. The 3D view is composed of images that are closest to the current
parameter settings, i.e., the closest available database elements for a requested view angle,
persistence interval, and selected level. Components that do not exists for a selected level
or that do not exceed a persistence threshold are grayed out in all views.

The interface provides three key mechanisms to handle numerous components:
1) before parameter updates the interface indicates the resulting numbers of compo-
nents, split tree branches, and NTG edges; 2) components can be filtered based on size,
persistence, and overlap thresholds; and 3) if numerous components have been chosen for
visualization, the interface initially groups them together based on the nesting hierarchies
and persistence values to generate a manageable amount of UI elements. Specifically,
instead of rendering the entire split tree at once, the interface initially draws only a
user-controlled number of the most persistent branches. Analysts then have the option
to further expand individual branches, where the number of children is encoded by the
width of the parent branch. Similarly, instead of rendering numerous tracks of the NTG
for a certain level, these tracks are initially represented by their parent edges at the lower
layers, and analysts can interactively toggle their visibility.

Layout updates of the graphs are only performed when necessary, or on request.
For example, tightening the thresholds filters more components, which results in less
NTG edges, split tree branches, and critical point pairs. Instead of updating the graph
layouts immediately, the corresponding UI elements are simply removed, so that analysts
can easily comprehend the updates without reorienting themselves within a new layout

130 CHAPTER 5 — DYNAMIC NESTED TRACKING GRAPHS

(Fig. 5.9 middle and bottom). However, analysts always have the option to recompute the
layouts while ignoring the filtered components to generate smoother graphs. The interface
also provides visual consistency when a new level is added to the NTG. Specifically, the
layout algorithm described by Lukasczyk et al. [66] processes the layers of the NTG
individually, and then stacks them in a bottom-up approach. Hence, inserting a level
does not effect the layers of levels smaller than the new level, i.e., adding a level that
is larger than all current levels results in a new layer that is completely embedded in
the previous top layer. Overall, the interface enables analysts to follow the history of
individual components and groups, filter them based on various metrics, and explore the
simulation in a focus+context approach.

Figure 5.8: The presented topology-based visual analytics framework supports feature-
centered navigation of Cinema databases consisting of image and analysis products
generated during large-scale simulation runs. Here, the interface shows an ensemble
member of the viscous finger dataset for a salt concentration level of 30, where colors
correspond to individual fingers. The prime interaction device of this interface is a nested
tracking graph (NTG) that displays the temporal evolution of superlevel set components
and their properties for multiple levels simultaneously (bottom). The NTG is used to
retrieve component images that are stored in a Cinema database (top left), whereas
the split tree (top center) and persistence diagram (top right) support users in selecting
important levels and filter criteria, which are in turn used to update the NTG in real-time.

5.4 RESULTS 131

5.4 RESULTS
This section evaluates the proposed methodology based on three real-world examples. The
first case study compares the post hoc tracking algorithm to the explicit approach described
in Sec. 3.2.2 by contrasting the resulting graphs for the 2016 scientific visualization
contest dataset [42] (Sec. 5.4.1). To demonstrate that the proposed approach can be
used to effectively explore large-scale simulations with numerous components, the other
two case studies deal with much larger and more complex datasets—i.e., the simulation
ensemble of the 2018 scientific visualization contest [43] (Sec. 5.4.2), and a computational
fluid dynamics simulation with thousands of vortex features (Sec. 5.4.3).

5.4.1 Viscous Fingering
This case study compares the results of the graph operation-based tracking approach and
the original overlap-based algorithm (Sec. 3.2.2) for the viscous fingering simulation
ensemble that was already introduced in Sec. 2.4.2. In a nutshell, the simulations model
the process of viscous fingering inside a water filled cylinder with an infinite salt supply
at its top (gray surface in Fig. 5.8). As the salt mixes with the water, the solutions
form characteristic structures with increased salt concentration values, called viscous
fingers (colored components in Fig. 5.8), which can be identified algorithmically by first
sampling the salt concentration density of the pointsets on a regular grid and then deriving
superlevel set components below the salt supply (Sec. 2.4.2).

The top and middle row of Fig. 5.9 show two NTGs for the same simulation run,
where the first graph is derived with the original approach that explicitly computes the
overlap of superlevel set components (Alg. 5), and the second graph is derived with the
graph operation-based algorithm that processes meta-edges and split trees (Alg. 10). The
graphs mostly match, except that the new algorithm adds more edges than the original
approach. This is due to the segmentation-based tracking approach, as components inside
a segment are collectively tracked based on the largest component (Sec. 5.2.1). Thus,
the new algorithm detects at least the same amount of overlaps as the old approach,
but also matches components whose corresponding segments overlap. For instance, the
volumes of fast moving components might not overlap in time, and therefore the original
algorithm identifies the components in each timestep as new emerging features, which
is semantically incorrect. However, the corresponding domain segments are likely to
overlap since they correspond to the same moving maximum. As a consequence, the
segmentation-based algorithm identifies the components as a single moving feature (thin
lines of Fig. 5.9). Choosing an appropriate segmentation refinement level during the
meta-edge generation improves the accuracy of this matching (Sec. 5.2.1). In all presented

132 CHAPTER 5 — DYNAMIC NESTED TRACKING GRAPHS

experiments, this refinement level was set to the persistence threshold that was used to
remove noise, which yielded adequate results. In fact, choosing the refinement level
in this way produces the same NTG as the explicit approach for the example shown in
Fig. 5.9. The segmentation-based algorithm makes it also possible to interactively restrict
or relax tracking criteria by respectively requiring a minimum amount of overlap, or by
additionally matching segments that are connected via meta-edges further down in trees.

The main advantage of the segmentation-based algorithm is that once the meta-edges
have been computed, the NTG algorithm no longer requires access to the volumetric
simulation data. Processing the meta-edges and split trees is also significantly faster than
explicitly computing superlevel set components and their respective overlaps: deriving
NTGs for one ensemble member for the same parameters on the same hardware takes on
average ∼ 6 seconds with the old approach, and ∼ 0.1 seconds with the new algorithm.
NTGs for the following jet and asteroid case studies can still be computed in milliseconds,
whereas the explicit approach requires several minutes. This speedup enables analysts
to interactively update level, persistence, overlap, and size constraints (Fig. 5.9). To
summarize, the post hoc tracking algorithm is capable of tracking features more accurately
and flexible than the explicit approach, and enables users to compute NTGs in real-time.

Obviously, an image database for such a small dataset requires far more disc space
than the original data (Tab. 5.1). In fact, storing images become only beneficial for
extremely large datasets, since the primary advantage of an image database is that its size
grows proportional to the parameter sampling, independent of the size of the depicted
simulation [2]. This can be observed in all presented experiments.

70 71 72 73 74 75

Figure 5.9: NTGs of the vis-
cous finger dataset for salt con-
centration levels 25, 30, and 35
(red to yellow). (Top) NTG gen-
erated with the explicit overlap-
based tracking approach outlined
in Alg. 5. (Middle and Bottom)
NTGs generated with the split
tree-based tracking approach out-
lined in Alg. 10, where the bottom
graph is filtered by persistence,
size, and overlap thresholds.

5.4.2 ASTEROID IMPACTS 133

5.4.2 Asteroid Impacts
This case study examines an ensemble of extreme-scale simulations that are part of a threat
assessment study of asteroid ocean impacts [43, 85], where individual ensemble members
correspond to various impact scenarios based on different asteroid sizes, impact angles,
and airburst heights. Each simulation is labeled according to the following convention:
the first letter is an ensemble index, the second letter corresponds to the airburst height
above sea level (A: None, B: 5km, and C: 10km), the third letter represents the asteroid
diameter (1: 100m, 3: 250m, and 5: 500m), and the fourth letter indicates the impact
angle (0: 27.4◦, 1: 45◦, and 2: 60◦). As oceans cover around 71% of Earth’s surface,
they are the most likely location of an asteroid impact. Therefore, the main objective of
the threat assessment is to explore the relationship between the impact scenarios and the
severeness of the tsunami they create upon impact. For instance, providing a minimum
asteroid size threshold would greatly support the effort of NASA’s Planetary Defense
Coordination Office [76] in tracking potentially dangerous objects. The following case
study will demonstrate that the proposed approach enables analysts to efficiently explore
and compare these different impact scenarios.

The original simulations advance an Eulerian grid that is adaptively refined at signifi-
cant areas based on the XRAGE simulation code [35]. The simulations compute, among
others, a temperature field on a regular grid with either 3003 or 5003 vertices. To generate
a Cinema database according to the proposed approach, these temperature fields are
streamed into an emulated in situ environment that processes each timestep. Tab. 5.1
shows the total computation time and size of analysis and image products on a cluster
node with an Intel E5-2640v3 processor (16 cores) and 256GB memory. The stated time
measurements include the computation of split tree segmentations [36], topological sim-
plifications [106], and meta-edges. Note, the image generation process is embarrassingly
parallel, so the actual image generation time is much lower in practice. The provided
image database sizes correspond to a sampling at 24 cameras, 6 levels, 2 persistence
intervals, and 4 component groups, which enables users to adequately rotate the 3D view
and update parameters. Although the size of simulation yA31 is almost five times bigger
on the 5003 grid than on the 3003 grid, their respective image databases are roughly the
same size since components are depicted in a fixed number of groups. This demonstrates
that the database size is decoupled from the size of the underlying data, but to provide
more flexibility it is necessary to sample the parameter space more thoroughly. Thus,
the proposed approach can scale to very large data sizes with an acceptable flexibility
trade-off during post hoc analysis.

134 CHAPTER 5 — DYNAMIC NESTED TRACKING GRAPHS

Fig. 5.10 shows for timestep 108 of simulation run yA31 (5003) the split tree (third
row), a composited 3D view (fourth row), and an NTG that is once colored by layer (first
row), and once colored by individual components for level 0.2eV (second row). Here, the
NTGs clearly illustrates that at the time of impact the entire region around the impact
site is a single burning volume that disperses over time into four sub volumes (blue, red,
orange, and green UI elements). Since NTGs can be updated coherently in real-time and
since their layers partition components into groups, analysts can interactively explore
different levels and the corresponding components by expending edges of the split trees
and NTGs. With this focus+context approach, analysts can select individual components
and their respective tracks for detailed examination, and it is possible to further filter
the graph based on size, overlap, and persistence thresholds. Additionally, the split tree
and persistence diagram support the user in selecting important parameters. Based on a
component selection, the interface then queries and composes images form the Cinema
database into a 3D rendering of the simulation. Note, although the database contains
only two persistence intervals, filtered components can at least be colored gray in the
composited view. Thus, if there exists a small number of low persistent components—i.e.,
they do not clutter the 3D view—then a small number of persistence intervals is sufficient.
All interface elements together then guide the user while examining specific components
or component groups; e.g., the split tree indicates that the green component contains
the global maximum, whereas the NTG and the 3D view show that the volume of the
green component is relatively small. The low overhead of the graph operation-based NTG
algorithm and the image compositing enables analysts to quickly update parameters and
cycle through different ensemble members at interactive framerates. This is the prime
advantage over previous approaches.

5.4.2 ASTEROID IMPACTS 135

92 94 96 98 100 102 104 106 108

92 94 96 98 100 102 104 106 108

0

0.1

0.2

0.3

0.4

Figure 5.10: Analysis of the asteroid impact yA31 temperature field. First and second
row: NTGs visualizing the evolution of the temperature field for the levels 0.15eV ,
0.2eV , and 0.28eV , where the second graph highlights level 0.2eV . Third and fourth row:
Split tree and 3D view of timestep 108, where the tree indicates the nesting hierarchy
of features, and 3D view composes images for level 0.2eV . The proposed approach
partitions the temperature volumes—and their contained subfeatures—into groups: the
asteroid trail (dark blue), the cloud that raises to the stratosphere (dark red), the wave
that thrusts forward over the ocean (dark orange), and the volume containing the global
maximum at the impact site (dark green).

136 CHAPTER 5 — DYNAMIC NESTED TRACKING GRAPHS

5.4.3 Jet Simulation
This case study focuses on a jet simulation and was chosen to illustrate the utility of the
proposed approach for feature-rich datasets. The simulation describes a high-velocity
fluid jet entering a medium at rest. Due to viscous effects, a large vortex ring is generated
at the top of the jet that quickly breaks down into a large number of smaller vortices as the
flow transitions towards turbulence. From the original velocity data, vorticity magnitude
is computed and subjected to analysis to identify individual vortices as superlevel set
components of high vorticity.

Fig. 5.5 shows the roughly five thousand superlevel set components that exist for level
500 at timestep 2000. Even after topological simplification, the split tree of that timestep
still consists of more than 100k branches. As explained previously, the image database
size only grows proportional to the parameter sampling and not to the feature complexity
and quantity (Tab. 5.1). Moreover, grouping components based on split tree branches has
the advantage that each group constitutes a local component cluster. Toggling the visibility
of these groups therefore supports effective spatial peeling. As even hundreds of images
can be composed at interactive framerates, the proposed analysis framework enables
analysts to quickly browse through time and update parameters. However, to provide more
flexibility, it is necessary to generate image databases for a larger number of component
groups and persistence intervals, which significantly increases the databases sizes even
further. To summarize, the demonstrated case studies show that image databases are
not necessarily small, but seem to grow significantly smaller when moving towards
extreme-scale simulations [2].

Dataset #Cells #Steps |C|·|L|·|P|·n TA TI SS SA SI

VF Run1 25.1 ·103 100 24×5×1×1 2 m 3 m 90 MB 3 MB 1 GB

VF Run2 25.1 ·103 100 24×5×1×2 2 m 7 m 90 MB 3 MB 2 GB

VF Run3 25.1 ·103 100 24×5×1×3 2 m 15 m 90 MB 3 MB 3 GB

yA31 12.4 ·107 260 24×6×2×4 45 h 43 h 121 GB 28 MB 21 GB

yA31 2.6 ·106 260 24×6×2×4 16 h 13 h 26 GB 17 MB 20 GB

yB31 2.6 ·106 260 24×6×2×4 17 h 13 h 26 GB 12 MB 19 GB

yC31 2.6 ·106 260 24×6×2×4 15 h 14 h 26 GB 14 MB 22 GB

Jet 3.3 ·107 3000 24×6×2×4 25 h 15 d 375 GB 108 MB 260 GB

Table 5.1: Statistics of the presented case studies. From left to right: dataset name,
cell count (all regular grids), number of timesteps, image sampling, total aggregated
computation time of analysis and image products, and total size of simulations, analysis
products, and images.

5.5 DISCUSSION 137

5.5 DISCUSSION
This chapter described a scalable processing pipeline that enables the interactive visual
analysis of large-scale scientific simulations where superlevel set components and their
evolution are of primary interest. The approach first stores analysis products and images
during simulation runtime in a Cinema database that can later be used during post
hoc analysis to efficiently explore the underlying simulation in a topology-based visual
analytics framework. To this end, the approach includes a split tree segmentation-based
tracking algorithm, and a branch decomposition-based image generation algorithm. The
core element of the framework is a dynamic nested tracking graph that illustrates the
evolution of components across time and different levels in one compact visualization. A
novel graph-based algorithm is capable of deriving NTGs at interactive framerates solely
based on the in situ generated database. By interacting with this graph, users can query
the database in a focus+context approach for other relevant analysis and image elements.
Thus, for the first time, the presented methodology enables users to generate and navigate
Cinema databases with a focus on features rather than along pre-determined parameter
axes. All presented algorithms have been implemented in the Topology ToolKit [104]
and are accessible as VTK filters [94] inside ParaView [1]. In conclusion, the proposed
approach enables users to effectively and efficiently explore simulations containing
numerous components.

Regarding future work, the proposed methodology can be improved in several as-
pects. Importantly, while theoretically feasible, the database generation has not yet been
examined during massively parallel in situ execution that is needed to allow scaling
to state-of-the-art, largest-scale simulations, which stand to benefit from the proposed
methodology. This hinges crucially on scalability of the split tree computation that is
central to the approach; here, e.g., the parallel peak pruning [14] approach could be used.
To facilitate practical usability, it appears possible to automate the parameter sampling—
e.g., dynamically determining persistence and level intervals—through heuristics or
optimization techniques, in order to keep the generated database within a given bandwidth
budget while maximizing post hoc flexibility, or alternatively, to ensure a specified degree
of flexibility while minimizing the database size. For example, the integration of the
VOIDGA approach [64] (Ch. 4) in the image generation process will reduce the number
of camera samples, which enables a more dense sampling of other parameters. Finally,
the database generation could benefit from low-level technical improvements, such as
different compression methods and data formats.

139

CHAPTER 6

CONCLUSION

This work described and evaluated a topology-based methodology that enables the effec-
tive post hoc analysis of large-scale simulations where the evolution of level, sublevel,
and superlevel set components is of primary interest. The backbone of the methodology is
a novel topological abstraction, called the nested tracking graph (NTG), that records the
evolution of features that exhibit a nesting hierarchy. NTGs are excellent tools to examine
the evolution of numerous features inherent in large-scale simulations by partitioning
edges into groups based on their nesting hierarchy. In contrast to current state-of-the-art
tracking approaches, NTGs simultaneously visualize feature evolution across multiple
parameters in one compact representation, effectively setting multiple tracking graphs
for individual parameter values in context to each other. Integrated in visual analytic
frameworks, NTGs provide an intuitive interaction device that enables analysts to browse
through time, filter and select components, and—most importantly—to aggregate com-
ponents into a manageable amount of groups that can be examined recursively in a
level-of-detail approach.

140 CHAPTER 6 — CONCLUSION

The second half of the manuscript extended their application to large-scale simula-
tions by (i) introducing a novel view-approximation oriented image database generation
approach (VOIDGA) that enables the post hoc visual exploration of features, and (ii)
by describing a post hoc tracking algorithm that enables the efficient computation of
NTGs for any parameter values without requiring access to the original simulation data.
Specifically, instead of explicitly storing feature geometries—which is often infeasible
for large-scale simulations due to bandwidth and disk space constraints—the described
methodology generates, at simulation runtime, a database consisting of intermediate anal-
ysis products—such as depth images, split trees, and meta-edges—that can be used during
post hoc analysis to compose 3D views, track features, and visualize feature properties.
The key advantage of this methodology is that the database only grows proportional to
a predefined parameter sampling—e.g., based on a maximum number of images, the
resolution of level intervals, or the limit of component groups—independent of the actual
size of the simulation data and the number of features. This advantage can not be stressed
enough, since the simulation size and the feature complexities are the primary obstacles
that need to be overcome to provide flexible, effective, interactive, post hoc analysis at
the era of exascale computing.

Regarding future research directions, several improvements appear possible. An
essential element of the described methodology is the parameter sampling as it predefines
the flexibility during post hoc analysis, and therefore the choice of the sampling precision
has a significant impact on the effectiveness of the approach. VOIDGA reduces one
parameter dimension by minimizing the number of camera locations while supporting
free camera movement, i.e., instead of storing a fixed set of camera locations, VOIDGA
stores a reduced set of images that enables the adequate approximation of any view
angle. It is conceivable to derive a similar sampling strategy for other parameters, e.g., by
dynamically determining significant persistence and level intervals based on the current
simulation state. Moreover, VOIDGA currently generates an image database for each
timestep individually, but it appears fruitful to integrate a view interpolation technique
across timesteps, which would allow to discard images that can already be interpolated
with an acceptable visual error. This will further reduce the size of the database, which
frees up space that can be used to sample other parameters more thoroughly.

To improve the accuracy of the post hoc tracking, additional topological abstractions
besides merge tree segmentations could be used to match features, e.g., persistence
pairs [100], Jacobi sets [23], or Morse-Smale complexes [28]. However, these approaches
might need to be adapted, as the described methodology requires that the used tracking
algorithms satisfy the nesting property (Def. 50) to represent their results via NTGs. In
future research, it would be very interesting to examine if this criterion can be relaxed.

Bibliography 141

BIBLIOGRAPHY

[1] J. Ahrens, B. Geveci, and C. Law. ParaView: An End-User Tool for Large-Data
Visualization. The Visualization Handbook, pp. 717–731, 2005.

[2] J. Ahrens, S. Jourdain, P. O’Leary, J. Patchett, D. H. Rogers, and M. Petersen. An
Image-Based Approach to Extreme Scale In Situ Visualization and Analysis. In
Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, pp. 424–434. IEEE Press, 2014.

[3] G. Aldrich, J. Lukasczyk, J. D. Hyman, G. Srinivasan, H. Viswanathan, C. Garth,
H. Leitte, J. Ahrens, and B. Hamann. A Query-Based Framework for Searching,
Sorting, and Exploring Data Ensembles. In IEEE Computing in Science and
Engineering, 2018.

[4] A. S. Almgren, J. B. Bell, M. J. Lijewski, Z. Lukić, and E. Van Andel. Nyx: A
Massively Parallel AMR Code for Computational Cosmology. The Astrophysical
Journal, 765(1):39, 2013.

[5] T. F. Banchoff. Critical Points and Curvature for Embedded Polyhedral Surfaces.
The American Mathematical Monthly, 77(5):475–485, 1970.

[6] U. Bauer, C. Lange, and M. Wardetzky. Optimal Topological Simplification of
Discrete Functions on Surfaces. Discrete & Computational Geometry, 47(2):347–
377, 2012.

[7] J. Bennett, V. Krishnamoorthy, S. Liu, R. W. Grout, E. R. Hawkes, J. H. Chen,
J. Shepherd, V. Pascucci, and P.-T. Bremer. Feature-Based Statistical Analysis of
Combustion Simulation Data. IEEE Trans. Vis. Comput. Graph., 17(12):1822–
1831, 2011.

[8] W. Bethel, B. Tierney, J. Lee, D. Gunter, and S. Lau. Using High-Speed WANs
and Network Data Caches to enable Remote and Distributed Visualization. In
Supercomputing, ACM/IEEE 2000 Conference, pp. 28–28. IEEE, 2000.

[9] T. Biedert and C. Garth. Contour Tree Depth Images for Large Data Visualization.
In C. Dachsbacher and P. Navrátil, eds., Eurographics Symposium on Parallel
Graphics and Visualization. The Eurographics Association, 2015.

142 Bibliography

[10] P.-T. Bremer, E. Bringa, M. Duchaineau, A. Gyulassy, D. Laney, A. Mascarenhas,
and V. Pascucci. Topological Feature Extraction and Tracking. In Journal of
Physics: Conference Series, vol. 78, p. 012007. IOP Publishing, 2007.

[11] P.-T. Bremer, B. Hamann, H. Edelsbrunner, and V. Pascucci. A Topological Hierar-
chy for Functions on Triangulated Surfaces. IEEE Transactions on Visualization
and Computer Graphics, 10(4):385–396, 2004.

[12] P.-T. Bremer, G. Weber, J. Tierny, V. Pascucci, M. Day, and J. Bell. Interactive
Exploration and Analysis of Large-Scale Simulations Using Topology-Based
Data Segmentation. IEEE Transactions on Visualization and Computer Graphics,
17:1307–1324, 2011.

[13] H. Carr, J. Snoeyink, and U. Axen. Computing Contour Trees in all Dimensions.
Computational Geometry, 24(2):75 – 94, 2003.

[14] H. Carr, G. Weber, C. M. Sewell, and J. P. Ahrens. Parallel Peak Pruning for
Scalable SMP Contour Tree Computation. In 2016 IEEE 6th Symposium on Large
Data Analysis and Visualization (LDAV), pp. 75–84. IEEE, 2016.

[15] K. Chen and D. A. Lorenz. Image Sequence Interpolation based on Optical Flow,
Segmentation, and Optimal Control. IEEE Transactions on Image Processing,
21(3):1020–1030, 2012.

[16] S. E. Chen and L. Williams. View Interpolation for Image Synthesis. In Pro-
ceedings of the 20th Annual Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH ’93, pp. 279–288. ACM, New York, NY, USA, 1993.

[17] M. Ciżnicki, M. Kierzynka, K. Kurowski, B. Ludwiczak, K. Napierała, and J. Pal-
czyński. Efficient Isosurface Extraction using Marching Tetrahedra and Histogram
Pyramids on Multiple GPUs. In International Conference on Parallel Processing
and Applied Mathematics, pp. 343–352. Springer, 2011.

[18] K. Cole-McLaughlin, H. Edelsbrunner, J. Harer, V. Natarajan, and V. Pascucci.
Loops in Reeb Graphs of 2-Manifolds. Discrete & Computational Geometry,
32(2):231–244, 2004.

[19] J. Cui, Z. Ma, and V. Popescu. Animated Depth Images for Interactive Remote
Visualization of Time-Varying Data Sets. IEEE transactions on visualization and
computer graphics, 20(11):1474–1489, 2014.

Bibliography 143

[20] A. De Wit, Y. Bertho, and M. Martin. Viscous fingering of miscible slices. Physics
of fluids, 17:054114, 2005.

[21] P. E. Debevec, C. J. Taylor, and J. Malik. Modeling and Rendering Architecture
from Photographs: A Hybrid Geometry-and Image-Based Approach. In Pro-
ceedings of the 23rd annual conference on Computer graphics and interactive
techniques, pp. 11–20. ACM, 1996.

[22] A. Doi and A. Koide. An Efficient Method of Triangulating Equi-Valued Surfaces
by Using Tetrahedral Cells. IEICE TRANSACTIONS on Information and Systems,
74(1):214–224, 1991.

[23] H. Edelsbrunner and J. Harer. Jacobi Sets, pp. 37–57. London Mathematical
Society Lecture Note Series. Cambridge University Press, 2004.

[24] H. Edelsbrunner and J. Harer. Persistent Homology - A Survey. Contemporary
mathematics, 453:257–282, 2008.

[25] H. Edelsbrunner and J. Harer. Computational Topology: An Introduction. American
Mathematical Soc., 2010.

[26] H. Edelsbrunner, J. Harer, A. Mascarenhas, and V. Pascucci. Time-varying Reeb
Graphs for Continuous Space-time Data. In Symposium on Computational Geome-
try, pp. 366–372. Citeseer, 2004.

[27] H. Edelsbrunner, J. Harer, and A. K. Patel. Reeb Spaces of Piecewise Linear
Mappings. In Symposium on Computational Geometry, pp. 242–250, 2008.

[28] H. Edelsbrunner, J. Harer, and A. Zomorodian. Hierarchical Morse-Smale Com-
plexes for Piecewise Linear 2-Manifolds. Discrete and computational Geometry,
30(1):87–107, 2003.

[29] H. Edelsbrunner, D. Letscher, and A. Zomorodian. Topological Persistence and
Simplification. Discrete & Computational Geometry, 28(4):511–533, 2002.

[30] H. Edelsbrunner, D. Morozov, and V. Pascucci. Persistence-Sensitive Simplification
Functions on 2-Manifolds. In Proceedings of the twenty-second annual symposium
on Computational geometry, pp. 127–134. ACM, 2006.

[31] H. Edelsbrunner and E. P. Mücke. Simulation of Simplicity: A Technique to Cope
with Degenerate Cases in Geometric Algorithms. ACM Transactions on Graphics
(tog), 9(1):66–104, 1990.

144 Bibliography

[32] J. Ellson, E. Gansner, L. Koutsofios, S. C. North, and G. Woodhull.
Graphviz—Open Source Graph Drawing Tools. In International Symposium
on Graph Drawing, pp. 483–484. Springer, 2001.

[33] J. Feder. Viscous Fingering in Porous Media. In Fractals, pp. 41–61. Springer,
1988.

[34] O. Fernandes, S. Frey, F. Sadlo, and T. Ertl. Space-Time Volumetric Depth Images
for In-Situ Visualization. In IEEE 4th Symposium on Large Data Analysis and
Visualization (LDAV), pp. 59–65, 2014.

[35] M. Gittings, R. Weaver, M. Clover, T. Betlach, N. Byrne, R. Coker, E. Dendy,
R. Hueckstaedt, K. New, W. R. Oakes, et al. The RAGE Radiation-Hydrodynamic
Code. Computational Science & Discovery, 1(1):015005, 2008.

[36] C. Gueunet, P. Fortin, J. Jomier, and J. Tierny. Task-Based Augmented Merge
Trees with Fibonacci Heaps. In IEEE Symposium on Large Data Analysis and
Visualization 2017, 2017.

[37] T. Gurdan, M. R. Oswald, D. Gurdan, and D. Cremers. Spatial and temporal
interpolation of multi-view image sequences. In German Conference on Pattern
Recognition, pp. 305–316. Springer, 2014.

[38] A. Gyulassy, V. Natarajan, V. Pascucci, and B. Hamann. Efficient Computa-
tion of Morse-Smale Complexes for Three-Dimensional Scalar Functions. IEEE
Transactions on Visualization and Computer Graphics, 13(6):1440–1447, 2007.

[39] C. Hane, L. Ladicky, and M. Pollefeys. Direction matters: Depth estimation with a
surface normal classifier. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 381–389, 2015.

[40] C. Heine, H. Leitte, M. Hlawitschka, F. Iuricich, L. De Floriani, G. Scheuermann,
H. Hagen, and C. Garth. A Survey of Topology-Based Methods in Visualization.
In Computer Graphics Forum, vol. 35, pp. 643–667. Wiley Online Library, 2016.

[41] J. Hocking and G. Young. Topology. Addison Wesley, 1961.

[42] IEEEVIS. Scientific Visualization Contest 2016.
http://www.uni-kl.de/sciviscontest/, 2016.

[43] IEEEVIS. Scientific Visualization Contest 2018.
http://sciviscontest2018.org/, 2018.

http://www.uni-kl.de/sciviscontest/
http://sciviscontest2018.org/

Bibliography 145

[44] G. Ji and H.-W. Shen. Feature tracking using earth mover’s distance and global
optimization. In Pacific Graphics, vol. 2, 2006.

[45] G. Ji, H.-W. Shen, and R. Wenger. Volume Tracking using Higher Dimensional
Isosurfacing. In Proceedings of the 14th IEEE Visualization 2003 (VIS’03), p. 28.
IEEE Computer Society, 2003.

[46] L. V. Kantorovich. On the Translocation of Masses. Journal of Mathematical
Sciences, 133(4):1381–1382, 2006.

[47] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by Simulated Anneal-
ing. Science, 220(4598):671–680, 1983.

[48] W. Köpp and T. Weinkauf. Temporal Treemaps: Static Visualization of Evolving
Trees. IEEE transactions on visualization and computer graphics, 25(1):534–543,
2019.

[49] M. Krivokuća, B. C. Wünsche, and W. Abdulla. A new Error Metric for Geometric
Shape Distortion using Depth Values from Orthographic Projections. In Proceed-
ings of the 27th Conference on Image and Vision Computing New Zealand, pp.
388–393. ACM, 2012.

[50] P. Lacroute and M. Levoy. Fast Volume Rendering Using a Shear-Warp Factoriza-
tion of the Viewing Transformation. In Proceedings of the 21st Annual Conference
on Computer Graphics and Interactive Techniques, SIGGRAPH ’94, pp. 451–458.
ACM, New York, NY, USA, 1994.

[51] H. G. Lalgudi, M. W. Marcellin, A. Bilgin, H. Oh, and M. S. Nadar. View
Compensated Compression of Volume Rendered Images for Remote Visualization.
IEEE Transactions on Image Processing, 18(7):1501–1511, 2009.

[52] A. G. Landge, V. Pascucci, A. Gyulassy, J. C. Bennett, H. Kolla, J. Chen, and P.-T.
Bremer. In-Situ Feature Extraction of Large Scale Combustion Simulations using
Segmented Merge Trees. In High Performance Computing, Networking, Storage
and Analysis, SC14: International Conference for, pp. 1020–1031. IEEE, 2014.

[53] D. Laney, A. Mascarenhas, P. Miller, V. Pascucci, et al. Understanding the Structure
of the Turbulent Mixing Layer in Hydrodynamic Instabilities. IEEE Transactions
on Visualization and Computer Graphics, 12(5):1053–1060, 2006.

146 Bibliography

[54] M. Levoy and P. Hanrahan. Light Field Rendering. In Proceedings of the 23rd An-
nual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH
’96, pp. 31–42. ACM, New York, NY, USA, 1996.

[55] B. Li, C. Shen, Y. Dai, A. van den Hengel, and M. He. Depth and surface
normal estimation from monocular images using regression on deep features and
hierarchical CRFs. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 1119–1127, 2015.

[56] J. Li, R. Klein, and A. Yao. A Two-Streamed Network for Estimating Fine-Scaled
Depth Maps from Single RGB Images. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 3372–3380, 2017.

[57] C. Lipski, C. Linz, K. Berger, A. Sellent, and M. Magnor. Virtual Video Cam-
era: Image-Based Viewpoint Navigation through Space and Time. In Computer
Graphics Forum, vol. 29, pp. 2555–2568. Wiley Online Library, 2010.

[58] F. Liu, C. Shen, G. Lin, and I. Reid. Learning Depth from Single Monocular
Images using Deep Convolutional Neural Fields. IEEE transactions on pattern
analysis and machine intelligence, 38(10):2024–2039, 2016.

[59] W. E. Lorensen and H. E. Cline. Marching Cubes: A High Resolution 3D Surface
Construction Algorithm. In ACM siggraph computer graphics, vol. 21, pp. 163–
169. ACM, 1987.

[60] J. Lukasczyk. Cinema modules of the Topology ToolKit (TTK).
https://topology-tool-kit.github.io/, 2019.

[61] J. Lukasczyk. Nested Tracking Graph modules of the Topology ToolKit (TTK).
https://topology-tool-kit.github.io/, 2019.

[62] J. Lukasczyk. VOIDGA modules of the Topology ToolKit (TTK).
https://topology-tool-kit.github.io/, 2019.

[63] J. Lukasczyk, G. Aldrich, M. Steptoe, G. Favelier, C. Gueunet, J. Tierny, R. Ma-
ciejewski, B. Hamann, and H. Leitte. Viscous Fingering: A Topological Visual
Analytic Approach. In Applied Mechanics and Materials, vol. 869, pp. 9–19. Trans
Tech Publ, 2017.

[64] J. Lukasczyk, E. Kinner, J. Ahrens, H. Leitte, and C. Garth. VOIDGA: A View-
Approximation Oriented Image Database Generation Approach. In IEEE 8th

https://topology-tool-kit.github.io/
https://topology-tool-kit.github.io/
https://topology-tool-kit.github.io/

Bibliography 147

Symposium on Large Data Analysis and Visualization (LDAV) [Best Paper Award],
2018.

[65] J. Lukasczyk, R. Maciejewski, C. Garth, and H. Hagen. Understanding Hotspots:
A Topological Visual Analytics Approach. In Proceedings of the 23rd SIGSPATIAL
International Conference on Advances in Geographic Information Systems, GIS
’15, pp. 36:1–36:10. ACM, 2015.

[66] J. Lukasczyk, G. Weber, R. Maciejewski, C. Garth, and H. Leitte. Nested Tracking
Graphs. In Computer Graphics Forum [Best Paper Award], vol. 36, pp. 12–22,
2017.

[67] Z. Lukić, C. W. Stark, P. Nugent, M. White, A. A. Meiksin, and A. Almgren. The
Lyman α Forest in Optically Thin Hydrodynamical Simulations. Monthly Notices
of the Royal Astronomical Society, 446(4):3697–3724, 2014.

[68] K.-L. Ma. In Situ Visualization at Extreme Scale: Challenges and Opportunities.
IEEE Computer Graphics and Applications, 29(6):14–19, 2009.

[69] S. Maadasamy, H. Doraiswamy, and V. Natarajan. A Hybrid Parallel Algorithm for
Computing and Tracking Level Set Topology. In High Performance Computing
(HiPC), 2012 19th International Conference on, pp. 1–10. IEEE, 2012.

[70] A. Mascarenhas and J. Snoeyink. Isocontour based Visualization of Time-varying
Scalar Fields, pp. 41–68. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[71] L. McMillan and G. Bishop. Plenoptic modeling: An image-based rendering
system. In Proceedings of the 22nd annual conference on Computer graphics and
interactive techniques, pp. 39–46. ACM, 1995.

[72] J. W. Milnor, M. Spivak, R. Wells, and R. Wells. Morse Theory. Princeton
university press, 1963.

[73] D. Morozov and G. Weber. Distributed Merge Trees. In Acm sigplan notices,
vol. 48, pp. 93–102. ACM, 2013.

[74] D. Morozov and G. Weber. Distributed Contour Trees. In Topological Methods in
Data Analysis and Visualization III, pp. 89–102. Springer, 2014.

[75] K. Mueller, A. Smolic, K. Dix, P. Merkle, P. Kauff, and T. Wiegand. View
Synthesis for Advanced 3D Video Systems. EURASIP Journal on image and video
processing, 2008(1):438148, 2009.

148 Bibliography

[76] NASA. Planetary Defense Coordination Office.
https://www.nasa.gov/planetarydefense, 2018.

[77] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J. Davison,
P. Kohi, J. Shotton, S. Hodges, and A. Fitzgibbon. KinectFusion: Real-Time Dense
Surface Mapping and Tracking. In Mixed and augmented reality (ISMAR), 2011
10th IEEE international symposium on, pp. 127–136. IEEE, 2011.

[78] Z. Ni, D. Tian, S. Bhagavathy, J. Llach, and B. S. Manjunath. Improving the Quality
of Depth Image Based Rendering for 3D Video Systems. In Image Processing
(ICIP), 2009 16th IEEE International Conference on, pp. 513–516. IEEE, 2009.

[79] P. Oesterling, C. Heine, G. Weber, D. Morozov, and G. Scheuermann. Comput-
ing and Visualizing Time-Varying Merge Trees for High-Dimensional Data. In
Topological Methods in Data Analysis and Visualization, pp. 87–101. Springer,
2015.

[80] J. Ogniewski. High-Quality Real-Time Depth-Image-Based-Rendering. In Pro-
ceedings of SIGRAD 2017, August 17-18, 2017 Norrköping, Sweden, pp. 1–8.
Linköping University Electronic Press, 2017.

[81] M. M. Oliveira. Image-based modeling and rendering techniques: A survey. RITA,
9(2):37–66, 2002.

[82] Open-Source Cinema Viewers. CVLIB. http://cinemaviewer.org/, 2018.

[83] P. O’Leary, J. Ahrens, S. Jourdain, S. Wittenburg, D. H. Rogers, and M. Pe-
tersen. Cinema Image-Based In Situ Analysis and Visualization of MPAS-Ocean
Simulations. Parallel Computing, 55:43–48, 2016.

[84] V. Pascucci, K. Cole-McLaughlin, and G. Scorzelli. Multi-Resolution Computation
and Presentation of Contour Trees. In Proc. IASTED Conference on Visualization,
Imaging, and Image Processing, pp. 452–290. Citeseer, 2004.

[85] J. Patchett, G. Gisler, B. Nouanesengsy, D. H. Rogers, G. Abram, F. Samsel,
K. Tsai, and T. Turton. Visualization and Analysis of Threats from Asteroid Ocean
Impacts. Los Alamos National Laboratory, 2016.

[86] F. H. Post, B. Vrolijk, H. Hauser, R. S. Laramee, and H. Doleisch. The State of the
Art in Flow Visualisation: Feature Extraction and Tracking. In Computer Graphics
Forum, vol. 22, pp. 775–792. Wiley Online Library, 2003.

Bibliography 149

[87] G. Reeb. Sur les points singuliers dune forme de Pfaff compltement intgrable ou
dune fonction numrique. Comptes Rendus des séances de lAcadémie des sciences,
222(847-849):76, 1946.

[88] E. Reinhard, W. Heidrich, P. Debevec, S. Pattanaik, G. Ward, and K. Myszkowski.
High Dynamic Range Imaging: Acquisition, Display, and Image-Based Lighting.
Morgan Kaufmann, 2010.

[89] B. Rieck, U. Fugacci, J. Lukasczyk, and H. Leitte. Clique Community Persis-
tence: A Topological Visual Analysis Approach for Complex Networks. IEEE
transactions on visualization and computer graphics, 24(1):822–831, 2018.

[90] D. Rogers, J. Woodring, J. Ahrens, J. Patchett, and J. Lukasczyk. Cinema Database
Specification - Dietrich Release v1.2. Technical Report LA-UR-17-25072, Los
Alamos National Laboratory, 2018.

[91] H. Saikia and T. Weinkauf. Global Feature Tracking and Similarity Estimation in
Time-Dependent Scalar Fields. In Computer Graphics Forum, vol. 36, pp. 1–11.
Wiley Online Library, 2017.

[92] R. Samtaney, D. Silver, N. Zabusky, and J. Cao. Visualizing Features and Tracking
their Evolution. Computer, 27(7):20–27, 1994.

[93] W. Schroeder, R. Maynard, and B. Geveci. Flying Edges: A High-Performance
Scalable Isocontouring Algorithm. In 2015 IEEE 5th Symposium on Large Data
Analysis and Visualization (LDAV), pp. 33–40. IEEE, 2015.

[94] W. J. Schroeder, K. Martin, and W. E. Lorensen. The Visualization Toolkit: An
Object Oriented Approach to 3D Graphics (3rd edition). Kitware, Inc., 2004.

[95] H. Shum and S. B. Kang. Review of Image-Based Rendering Techniques. In Visual
Communications and Image Processing 2000, vol. 4067, pp. 2–14. International
Society for Optics and Photonics, 2000.

[96] D. Silver and X. Wang. Tracking and Visualizing Turbulent 3D Features. IEEE
Transactions on Visualization and Computer Graphics, 3:129–141, 1997.

[97] D. Silver and X. Wang. Tracking Scalar Features in Unstructured Data Sets. In
Proceedings Visualization’98 (Cat. No. 98CB36276), pp. 79–86. IEEE, 1998.

[98] A. Smolic, K. Muller, K. Dix, P. Merkle, P. Kauff, and T. Wiegand. Intermedi-
ate View Interpolation based on Multiview Video Plus Depth for Advanced 3D

150 Bibliography

Video Systems. In Image Processing, 2008. ICIP 2008. 15th IEEE International
Conference on, pp. 2448–2451. IEEE, 2008.

[99] B.-S. Sohn and C. Bajaj. Time-Varying Contour Topology. IEEE Transactions on
Visualization and Computer Graphics, 12:14–25, 2006.

[100] M. Soler, M. Plainchault, B. Conche, and J. Tierny. Lifted Wasserstein Matcher
for Fast and Robust Topology Tracking. In IEEE 8th Symposium on Large Data
Analysis and Visualization (LDAV), 2018.

[101] T. Stich, C. Linz, C. Wallraven, D. Cunningham, and M. Magnor. Perception-
Motivated Interpolation of Image Sequences. ACM Transactions on Applied
Perception (TAP), 8(2):11, 2011.

[102] W. Sun, L. Xu, O. C. Au, S. H. Chui, and C. W. Kwok. An Overview of Free
View-Point Depth-Image-Based Rendering (DIBR). In APSIPA Annual Summit
and Conference, pp. 1023–1030, 2010.

[103] J. Tierny. Contributions to Topological Data Analysis for Scientific Visualization.
Habilitation thesis, UPMC-Paris 6 Sorbonne Universités, 2016.

[104] J. Tierny, G. Favelier, J. A. Levine, C. Gueunet, and M. Michaux. The Topology
ToolKit. IEEE Transactions on Visualization and Computer Graphics, 2017.

[105] J. Tierny, A. Gyulassy, E. Simon, and V. Pascucci. Loop Surgery for Volumet-
ric Meshes: Reeb Graphs Reduced to Contour Trees. IEEE Transactions on
Visualization and Computer Graphics, 15(6), 2009.

[106] J. Tierny and V. Pascucci. Generalized Topological Simplification of Scalar
Fields on Surfaces. IEEE Transactions on Visualization and Computer Graphics,
18(12):2005–2013, 2012.

[107] J. Unger, A. Gardner, P. Larsson, and F. Banterle. Capturing Reality for Computer
Graphics Applications. In SIGGRAPH Asia 2015 Courses, p. 7. ACM, 2015.

[108] M. Van Kreveld, R. van Oostrum, C. Bajaj, V. Pascucci, and D. Schikore. Contour
Trees and Small Seed Sets for Isosurface Traversal. In Proceedings of the thirteenth
annual symposium on Computational geometry, pp. 212–220. ACM, 1997.

[109] Q. Wang, J. JaJa, and A. Varshney. An Efficient and Scalable Parallel Algorithm
for Out-Of-Core Isosurface Extraction and Rendering. In Parallel and Distributed
Processing Symposium, 2006. IPDPS 2006. 20th International, pp. 10–pp. IEEE,
2006.

Bibliography 151

[110] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image Quality Assess-
ment: from Error Visibility to Structural Similarity. IEEE Transactions on Image
Processing, 13(4):600–612, 2004.

[111] Z. Wang, E. P. Simoncelli, and A. C. Bovik. Multiscale Structural Similarity for
Image Quality Assessment. In Signals, Systems and Computers, 2004. Conference
Record of the Thirty-Seventh Asilomar Conference on, vol. 2, pp. 1398–1402. Ieee,
2003.

[112] G. Weber, P.-T. Bremer, M. Day, J. Bell, and V. Pascucci. Feature Tracking using
Reeb Graphs. In Topological Methods in Data Analysis and Visualization, pp.
241–253. Springer, 2011.

[113] M. Werlberger, T. Pock, M. Unger, and H. Bischof. Optical flow guided TV-
L1 video interpolation and restoration. In International Workshop on Energy
Minimization Methods in Computer Vision and Pattern Recognition, pp. 273–286.
Springer, 2011.

[114] W. Widanagamaachchi, C. Christensen, V. Pascucci, and P.-T. Bremer. Interactive
Exploration of Large-Scale Time-Varying Data using Dynamic Tracking Graphs.
In Large data analysis and visualization (LDAV), 2012 IEEE Symposium on, pp.
9–17. IEEE, 2012.

[115] J. Woodring, J. P. Ahrens, J. Patchett, C. Tauxe, and D. H. Rogers. High-
Dimensional Scientific Data Exploration via Cinema. In 2017 IEEE Workshop on
Data Systems for Interactive Analysis (DSIA), pp. 1–5. IEEE, 2017.

[116] H. Xu and B. Chen. Stylized Rendering of 3D Scanned Real World Environ-
ments. In Proceedings of the 3rd international symposium on Non-photorealistic
animation and rendering, pp. 25–34. ACM, 2004.

[117] H. M. Yilmaz, M. Yakar, S. A. Gulec, and O. N. Dulgerler. Importance of Digital
Close-Range Photogrammetry in Documentation of Cultural Heritage. Journal of
Cultural Heritage, 8(4):428–433, 2007.

[118] H. Yu, C. Wang, R. W. Grout, J. H. Chen, and K.-L. Ma. In Situ Visualization for
Large-Scale Combustion Simulations. IEEE computer graphics and applications,
30(3):45–57, 2010.

[119] F. Zhang, S. Lasluisa, T. Jin, I. Rodero, H. Bui, and M. Parashar. In-situ feature-
based objects tracking for large-scale scientific simulations. In 2012 SC Com-

152 Bibliography

panion: High Performance Computing, Networking Storage and Analysis, pp.
736–740. IEEE, 2012.

[120] S. Zinger, L. Do, and P. H. N. de With. Free-Viewpoint Depth Image Based
Rendering. Journal of visual communication and image representation, 21(5-
6):533–541, 2010.

[121] M. Zwicker, H. Pfister, J. van Baar, and M. Gross. Surface Splatting. In Proceedings
of the 28th Annual Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH ’01, pp. 371–378. ACM, New York, NY, USA, 2001.

Curriculum Vitae 153

CURRICULUM VITAE

Jonas Lukasczyk

Education

01/2015 - 07/2019 Dr. rer. nat. in Computer Science
Technische Universität Kaiserslautern, Germany

Member of IRTG 2057 (http://www.irtg2057.de/)

Research Topic:

• Topology-Based Characterization and Visual Analysis of Feature Evo-
lution in Large-Scale Simulations

09/2012 - 01/2015 M. Sc. in Applied Computer Science
Technische Universität Kaiserslautern, Germany

Master Thesis:

• Visualization and Analysis of Spatio-Temporal Trends

Focus Areas:

• Computational Geometry and Topology

• Scientific Visualization

• Mathematical Modelling

09/2009 - 09/2012 B. Sc. in Applied Computer Science
Technische Universität Kaiserslautern, Germany

Bachelor Thesis:

• Probabilistic Execution Time Estimation of Sequentially Executed
Embedded Systems

Experience

12/2017 - 07/2019 Research Associate, Visual Information Analysis Group, TU Kaiserslautern

10/2014 - 12/2017 Research Assistant, Scientific Visualization Lab, TU Kaiserslautern

08/2013 - 09/2014 Research Assistant, Image Processing Department, Fraunhofer ITWM

05/2011 - 07/2013 Research Assistant, Safety and Reliability Department, Fraunhofer IESE

http://www.irtg2057.de/

List of Publications 155

LIST OF PUBLICATIONS

• J. Lukasczyk, C. Garth, T. Biedert, R. Maciejewski, G.H. Weber, H. Leitte. Dynamic Nested
Tracking Graphs. EEE Transactions on Visualization and Computer Graphics. 2019.

• G. Aldrich, J. Lukasczyk, J.D. Hyman, G. Srinivasan, H. Viswanathan, C. Garth, H. Leitte,
J. Ahrens, and B. Hamann. A Query-based Framework for Searching, Sorting, and Explor-
ing Data Ensembles. Computing in Science and Engineering. 2019.

• A. Middel, J. Lukasczyk, S. Zakrzewski, M. Arnold, and R. Maciejewski. Urban Form and
Composition of Street Canyons: A Human-Centric Big Data and Deep Learning Approach.
Landscape and Urban Planning 183: 122-132. 2019.

• J. Lukasczyk, E. Kinner, J. Ahrens, H. Leitte, and C. Garth. VOIDGA: A View-Approximation
Oriented Image Database Generation Approach [Best Paper Award]. Proceedings of IEEE
Symposium on Large Data Analysis and Visualization (LDAV). 2018.

• A. Middel, J. Lukasczyk, R. Maciejewski, M. Demuzere, and M. Roth. Sky View Factor
Footprints for Urban Climate Modeling. Urban Climate, Volume 25, Pages 120-134. 2018.

• C. Wang, A. Middel, S.W. Myint, S. Kaplan, A.J. Brazel, and J. Lukasczyk. Assessing
Local Climate Zones in Arid Cities: The Case of Phoenix, Arizona and Las Vegas, Nevada.
ISPRS Journal of Photogrammetry and Remote Sensing, Volume 141, Pages 59-71. 2018.

• B. Rieck, U. Fugacci, J. Lukasczyk, and H. Leitte. Clique Community Persistence: A
Topological Visual Analysis Approach for Complex Networks. IEEE Transactions on
Visualization and Computer Graphics. 2017.

• J. Lukasczyk, G.H. Weber, R. Maciejewski, C. Garth, and H. Leitte. Nested Tracking
Graphs [Best Paper Award]. Computer Graphics Forum (Special Issue, Proceedings
Eurographics/IEEE Symposium on Visualization). Vol. 36. No. 3. 2017.

• J. Lukasczyk, G. Aldrich, M. Steptoe, G. Favelier, C. Gueunet, J. Tierny, R. Maciejewski,
B. Hamann, and H. Leitte. Viscous Fingering: A Topological Visual Analytic Approach.
Applied Mechanics and Materials 869 - Proceedings of the 1st Conference on Physical
Modeling for Virtual Manufacturing Systems and Processes (2017): S. 9-19. 2017.

• A. Middel, J. Lukasczyk, and R. Maciejewski. Sky View Factors from Synthetic Fish-
eye Photos for Thermal Comfort Routing - A Case Study in Phoenix, Arizona. Urban
Planning 2.1. 2017.

156 List of Publications

• G. Aldrich, J. Lukasczyk, M. Steptoe, R. Maciejewski, H. Leitte, and B. Hamann. Viscous
Fingers: A Topological Visual Analytics Approach [Honorable Mention]. IEEE Vis Contest.
2016.

• J. Lukasczyk, R. Maciejewski, C. Garth, and H. Hagen. Understanding Hotspots: A
Topological Visual Analytics Approach. ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems. 2015.

• J. Lukasczyk, X. Liang, W. Luo, E.D. Ragan, A. Middel, N. Bliss, D. White, H. Hagen,
and R. Maciejewski. A Collaborative Web-Based Environmental Data Visualization and
Analysis Framework. In Proc. Workshop on Visualization and Environmental Sciences
(EnvirVis). 2015.

• J. Lukasczyk, A. Middel, and H. Hagen. WebGL-Based Geodata Visualization for Policy
Support and Decision Making. In Proc. Workshop on Visualization and Environmental
Sciences (EnvirVis). 2014.

	Contents
	List of Figures
	List of Algorithms
	Notations
	Introduction
	Scope
	Contributions
	Structure

	Background and Related Work
	Preliminary Definitions
	Data Representation
	Domain Representation
	Value Representation

	Topology-Based Feature Characterization
	Level, Sublevel, and Superlevel Sets
	Merge and Contour Trees
	Critical Points
	Merge Tree Computation
	Contour Tree Computation
	Topological Simplification

	Feature Tracking
	Tracking Graphs
	Tracking via Spatial Overlap
	Topology-Based Tracking Approaches

	Cinema Databases
	View Approximation Techniques
	Implicit Geometry and No-Geometry based Techniques
	Depth Image Based Rendering Techniques

	Nested Tracking Graphs
	Motivation
	Approach
	Formalization
	NTG Computation Via Spatial Overlap
	Visualization

	Results
	Viscous Fingering
	Jet Simulation
	Dark Matter Halos
	Clique Communities

	Discussion

	VOIDGA
	Motivation
	Approach
	Image Similarity Metrics
	Database Backbone Generation
	Database Refinement
	Database Downsampling

	Results
	Error Plots
	Viscous Fingering
	Asteroid Ocean Impacts
	Karst Limestone Ground Sample
	Jet Streamlines

	Discussion

	Dynamic Nested Tracking Graphs
	Motivation
	In Situ Database Generation
	Merge Tree Segmentation-Based Tracking
	Image Generation

	Post Hoc Database Exploration
	Dynamic Nested Tracking Graphs
	Image Retrieval and Compositing
	Visual Analytics Framework

	Results
	Viscous Fingering
	Asteroid Impacts
	Jet Simulation

	Discussion

	Conclusion
	Bibliography
	Curriculum Vitae
	List of Publications

